VYBRANÉ STATĚ Z BETONOVÝCH KONSTRUKCÍ I

MODUL M01
STUDIJNÍ OPORA PŘEDMĚTU CL53
OBSAH

1 Úvod... 5
 1.1 Cíle.. 5
 1.2 Požadované znalosti... 5
 1.3 Doba potřebná ke studiu.. 5
 1.4 Klíčová slova.. 5
 1.5 Použitá terminologie... 6
 1.6 Metodický návod na práci s textem.. 6

2 Konstrukce citlivé na reologické působení betonu.. 7

3 Reologické vlastnosti betonu.. 10
 3.1 Fyzikální podstata dotvarování a smršťování betonu................................. 10
 3.2 Modul pružnosti.. 12
 3.3 Složky přetvoření betonu... 13
 3.4 Výpočet přetvoření betonu při konstantním napětí................................... 14
 3.5 Výpočet přetvoření betonu při proměnlivém napětí.................................. 15
 3.6 Některé reologické modely.. 17
 3.6.1 Teorie zpožděné pružnosti.. 17
 3.6.2 Teorie stárnutí.. 18
 3.6.3 Kombinované teorie.. 19
 3.7 Příklady výpočtu dotvarování, kontrolní otázky.. 22

4 Statická analýza postupně budovaných betonových a předpjatých
 konstrukcí.. 30
 4.1 Nehomogenita konstrukcí... 30
 4.2 Řešení reologických účinků na konstrukce v uzavřené formě.................... 32
 4.3 Metoda časové diskretizace... 41
 4.4 Zjednodušené metody řešení reologických účinků na konstrukce............. 44
 4.5 Časová analýza předpjatých betonových konstrukcí................................. 46
 4.5.1 Statická analýza konstrukce, statický model....................................... 46
 4.5.2 Modelování změn konfigurace konstrukce... 48
 4.5.3 Analýza reologických účinků na konstrukci...................................... 48
 4.5.4 Postup výpočtu.. 49
 4.6 Příklad výpočtu metodou časové diskretizace, kontrolní otázky.............. 50

5 Závěr ... 61
 5.1 Shrnutí.. 61
 5.2 Studijní prameny... 61
 5.2.1 Seznam použité literatury... 61
 5.2.2 Seznam doplňkové studijní literatury... 62
 5.2.3 Odkazy na další studijní zdroje a prameny....................................... 63
 5.3 Označení některých veličin.. 63
 5.3.1 Latinská písmena... 63
 5.3.2 Řecká písmena... 64
1 Úvod

1.1 Cíle

Tento text je studijní oporou předmětu CL53 Vybrané statě z betonových konstrukcí I. Primárním cílem je návod ke studiu reologických vlastností betonu a statické analýzy postupně budovaných betonových a předpjatých konstrukcí s použitím níže uvedené studijní literatury. Řešené příklady a úkoly by měly umožnit procvičení části získaných znalostí.

V této studijní opoře jsou vysvětleny vlastnosti betonu zatíženého dlouhodobě působícím zatížením, zejména pak dotvarování, smršťování a stárnutí betonu. Dále jsou popsány základní principy chování betonových prvků a konstrukcí s ohledem na reologické působení betonu a metody pro řešení účinků dotvarování a smršťování betonu na postupně budované betonové a předpjaté konstrukce včetně statické analýzy. Najdete zde rovněž odkazy na studijní materiály.

1.2 Požadované znalosti

Předkládaný text předpokládá základní znalosti čtenáře z oblastí: matematika, fyzika, stavební mechanika, pružnost, plasticita, stavební materiály, prvky betonových konstrukcí (moduly CM 1 až CM 4) a betonové konstrukce (moduly CS 1 až CS 4) a předpjatý beton. Pokud student nemá dostatečné znalosti předchozí látky, bude se jen těžko orientovat v řešené problematice.

1.3 Doba potřebná ke studiu

Doba potřebná ke studiu je individuální a závisí na schopnostech a průpravě studenta v předchozím studiu. Vychází z rozsahu předmětu ve studijním programu s prezentní formou studia 52 hodin. Odhadujeme, že potřebná doba pro nastudování teorie je 30 hodin a doba potřebná pro zpracování příkladu je 10 hodin, celkem tedy asi 40 hodin.

1.4 Klíčová slova

Beton, reologie, dotvarování, smršťování, konstrukce, analýza, postupná montáž, metoda časové diskretizace.
1.5 Použitá terminologie

Použitá terminologie a označení veličin jsou uvedeny v kapitole 5.3 této studijní opory. Anglické ekvivalenty jsou vesměs uvedeny v [26], kapitola 13, strana 172 až 176. Jednotlivé terminy jsou vysvětleny rovněž v textu.

1.6 Metodický návod na práci s textem

Text je rozdělen do pěti kapitol. V kapitole 1 je úvod, v kapitole 2 jsou popsány hlavní rysy konstrukcí citlivých na reologické působení betonu. Kapitola 3 popisuje modul pružnosti a reologické vlastnosti betonu, jejich fyzikální podstatu, složky přetvoření betonu a výpočet dotvarování a smršťování betonu při konstantním i při proměnlivém napětí. Dále jsou vyjmenovány některé reologické modely s vysvětlením teorie zpožděné pružnosti, teorie stárnutí a některých kombinovaných teorií.

V kapitole 4 pochopíte princip statické analýzy postupně budovaných konstrukcí, naleznete vysvětlení, co to je nehomogenita konstrukcí a jak lze řešit reologické účinky na konstrukce v uzavřené formě. Je popsána také metoda časové diskretizace a zjednodušené metody řešení reologických účinků na konstrukce. V závěru kapitoly jsou vysvětleny zásady a postup výpočtu při provádění časově závislé analýzy betonových konstrukcí.

Kapitoly 3 a 4 obsahují řešené příklady k procvičení výpočtu dotvarování a smršťování, příklad výpočtu metodou časové diskretizace a kontrolní otázky. Naleznete zde i odkazy na citovanou literaturu. Použitá literatura pokrývá požadovaný rozsah teoretických znalostí a obsahuje některé řešené příklady k procvičení.

V kapitole 5 je shrnutí probrané látky, označení veličin a jsou zde uvedeny citace studijních zdrojů a pramenů, které je možné použít pro praktické projektování, analýzu a posouzení konstrukcí.

Text je třeba studovat postupně vždy nejprve teoretickou část a poté aplikovat teoretické znalosti na praktické příklady. Pokud není příslušná část jasná, je třeba začít studovat znovu a nepokračovat ve studiu nové látky.
2 Konstrukce citlivé na reologické působení betonu

Jedním z hlavních rysů moderních nosných konstrukcí je jejich postupná výstavba (montáž či betonáž), při které konstrukce prochází množstvím výrobních stádií, v nichž dochází ke změnám statického působení konstrukce. Často bývá nejdříve zbudován hlavní nosný prvek (tvořen např. visutými kabely nebo závěsy, věšadly, nosníky nebo oblouky), který potom tvoří podpůrný systém pro ostatní části konstrukce nebo příčného řezu, viz Obr. 2.1.

U těchto konstrukcí se často s výhodou kombinují prvky tlačené či tažené s ohýbanými, tedy nosné prvky různého typu. Vznikají tak složité nosné soustavy zavěšené, visuté, obloukové či vzpinadlové, viz Obr. 2.2. Pro nosné prvky jsou používány různé druhy materiálu odlišné kvality a v případě betonu i odlišného stáří, viz Obr. 2.2. Kombinací hybridních systémů z oceli, prefabrikovaného a monolitického betonu mohou moderní stavební konstrukce dosáhnout značných ekonomických úspor. Při návrhu takových systémů se s výhodou využívají vlastnosti jednotlivých materiálů.

Během výstavby prochází konstrukce různými statickými systémy. Mění se okrajové podmínky, jsou betonovány nebo montovány nové nosné prvky, které jsou dodatečně předpinány, přičemž jsou odstraňovány jejich dočasné podpory. V mnoha konstrukcích se kombinují nosné betonové prvky s různým stářím betonu, které jsou postupně zatěžovány. Filozofie navrhování těchto konstrukcí
navic vychází z aktivního ovlivňování rozložení napětí předpětím. Výztuž působí na konstrukci silově, přičemž do převážné části nosných prvků vnáší tlaková napětí. Příklady těchto konstrukcí uvádí např. [20], [22].

Tyto specifické rysy způsobují vyšší citlivost konstrukcí na reologické působení betonu. Reologické vlastnosti betonu mohou výrazným způsobem ovlivnit použitelnost konstrukce. Například při výpočtu deformací se v praxi často setkáváme se skutečností, že průhyby předpjetých mostů od dlouhodobých zatížení jsou větší než hodnoty průhybů předpokládané projektem, viz Obr. 2.3. V některých případech, zejména u konstrukcí letmo betonovaných, dochází k průhybům nadměrným, které omezují či vylučují provozuschopnost konstrukce a které se v čase neustáleji [17]. Také únosnost konstrukce může být ovlivněna redistribucí vnitřních sil způsobenou dotvarováním a smršťováním. Proto modely pro analýzu postupně budovaných předpjetých konstrukcí musí co nejpřesněji popsat reologické vlastnosti betonu a zohlednit jejich dopad na dlouhodobé chování konstrukcí i na jejich mezní únosnost, viz např. [27].

Poněkud speciálním případem jsou rekonstrukce existujících nosných betonových konstrukcí. Při rekonstrukci bývají nosné prvky či celé systémy zesilovány např. dobetonováním vrstev monolitického betonu, lepením dodatečné vý-
zuže či předpináním. V důsledku toho nabývá dotvarování a smršťování opět na významu a jejich účinky na konstrukci je třeba řádně vyšetřit.

Kontrolní otázky

Jaké jsou hlavní rysy moderních nosných konstrukcí z hlediska postupné výstavby, typů nosných prvků a materiálů?

Jaké mohou být důsledky reologického působení betonu na chování konstrukcí?
3 Reologické vlastnosti betonu

Beton je tradiční stavební látkou, jehož vlastnosti byly předmětem zkoumání mnoha generací stavebních a materiálových inženýrů a jsou podrobně popsány např. v obsáhlém a uceleném díle Nevilla [19].

3.1 Fyzikální podstata dotvarování a smršťování betonu

Dotvarování a smršťování jsou nejdůležitějšími reologickými vlastnostmi betonu, při kterých dochází k objemovým změnám betonu. Podstata dotvarování betonu je zřejmá z chování cementového gelu. Ten obsahuje vodu chemicky vázanou, dále vodu v mikroporách a vodu kapilární. Dlouhodobým působením napětí je voda z mikroporů vytlačována do kapilár, odkud se vypařuje. Napětí je tak postupně přenášeno z viskózního média na jeho pružný skelet, přičemž se realizuje přetvoření od dotvarování. Velikost přetvoření od dotvarování je závislá na dlouhodobě působícím napětí v betonu, čase zatížení, na vlastnostech cementu, plniva a množství záměsové vody, na rozměrech prvku a na vlhkostních a teplotních poměrech okolního prostředí.

Ke smršťování (opakem je nabývání) betonu dochází, když se vypařuje chemicky volná voda z kapilár cementového gelu. Vytváření vodních menisků v kapilárách je doprovázeno vznikem povrchových tahových napětí (kapilární napětí). Toto napětí vytváří tlak na pevnou fázi – skelet, jehož deformace se projevuje jako smršťování. Smršťování betonu tedy nezávisí na tom, zda je beton zatížen či nikoliv, ale na vlhkostních a teplotních podmínkách v okolním prostředí, na stáří a složení betonu a na dimenzích konstrukčního prvku.

Kromě výše popsaného smršťování vysycháním zatrvlého betonu se v literatuře speciálně označují další jevy související se smršťováním. Jde o smršťování „sednutím“ čerstvého betonu (vzniká přibližně okolo počátku tuhnutí), které nastává odvodem přebytečné vody. Sednutí provádí objemová kontraktace rovna přibližně 1% objemu cementu, které je bráněno výztuží, velkými zrnami kameniva či vlhkým betonem. Tím vzniká napětí a trhliny v čerstvém betonu. Dalším jevem je „plastické“ smršťování, které má podobný účinek a je způsobeno ztrátou vody z povrchu betonu v důsledku jeho vysušení větrem či teplotou.

Po počátku tuhnutí pokračuje v betonu hydratační proces, při čemž se spotřebuje voda. Pokud není beton řádně ošetřován a není zabezpečen transfer vody do betonu z okolí (beton je vzdutotěsně izolován), dojde k samo- vysušování betonu a k odebirání vody z kapilár cementového gelu. To je doprovázeno tzv. „autogenním“ smršťováním. Protože hydratace betonu pokračuje ještě dlouho po počátku tuhnutí, i když ve zmenšené místě, je i autogenní smršťování dlouhodobý proces a nabývá často významných hodnot. Pro betony

1 Reologie je obecná vědní disciplína, která zkoumá přetváření pevných látek a kapalin v závislosti na čase.
běžných pevností (40-60 MPa) s vodním součinitelem \(w/c \geq 0,45 \) může dosáhnout poměrné přetvoření od autogenního smršťování hodnot okolo – 0,1 ‰,

pro vysokopevnostní betony s vodním součinitelem \(w/c < 0,40 \) dosahuje poměrné přetvoření od autogenního smršťování hodnot – 0,35 ‰, což je srovnatelné s velikostí smršťování od vysychání. Nebezpečí autogenního smršťování spočívá v tom, že zejména ve starších normových předpisech není zahrnuto ve funkcích popisujících smršťování, protože část autogenního smršťování proběhla před odformováním zkušebních vzorků, a tedy před počátkem měření.

Reologické vlastnosti jsou tedy vlastnostmi materiálu a jejich podstata se odvozuje z mikrostruktury betonu a z chování jeho částic a složek. Jako takové jsou ovlivněny mj. lokální teplotou a vlhkostí v daném místě. Tyto veličiny se v čase mění (jsou nestacionární) a pro jejich přesnou analýzu je třeba použít komplikovaně nelineární postupy. Vstupní veličiny pro tyto výpočty jsou navíc obtížně zjistitelné. Analýza betonové konstrukce jako celku respektující reologické jevy na úrovni materiálových vlastností je proto příliš složitá a v praxi nerealizovatelná. Ve výjimečných případech bývají prováděny výpočty části konstrukce, a to zejména s ohledem na vývoj hydratačního tepla (diafragmata velkých mostů, části přehradních hrází apod.).

Pro analýzu celé konstrukce proto běžně používáme zjednodušení, při kterém uvažujeme vlastnosti příčného řezu jako celku, ovlivňované teplotou a vlhkostí okolního prostředí. Uvažujeme tedy průměrné hodnoty dotvarování a smršťování po příčném řezu, Obr. 3.1. Takto pojaté reologické vlastnosti nejsou vlastnostmi pouze materiálu, ale také geometrie příčného řezu. V dalším textu se budeme zabývat pouze reologickým působením betonu v závislosti na vlastnostech příčného řezu jako celku.
3.2 Modul pružnosti

Modul pružnosti je základní veličinou udávající tuhost betonu. Závisí na řadě parametrů, zejména na složení, pevnosti a objemové hmotnosti betonu a na typu kameniva. Zjišťuje se experimentálně s využitím Hookeova zákona, přičemž výsledek zkoušky velmi závisí na způsobu a délce zatěžování, které je definováno v různých předpisech různě. Vzhledem k tomu, že zkouška modulu pružnosti je náročnější než zkouška pevnosti betonu v tlaku, udávají normy často vzorce pro modul pružnosti v závislosti na pevnosti betonu, případně na jeho objemové hmotnosti. Takto získaný modul pružnosti se však od reálné hodnoty může významně lišit, a to podle typu vzorce až o ±20%. Vliv typu kameniva na modul pružnosti zohledňuje alespoň zjednodušeným způsobem pouze CEB-FIP, 1990 [5].

Většina norem pracuje se smluvní hodnotou, tzv. sečnovým modulem pružnosti betonu E_{cm}, který získáme ze sklonu přímky mezi počátkem pracovního diagramu ($\sigma = 0$) a bodem, který reprezentuje přibližně mez úměrnosti betonu. Např. v EN 1992-1-1 [10] je to bod $\sigma = 0,4f_c$, ACI 318M-05 [1] udává $\sigma = 0,45f_c$. Počáteční tečnový modul pružnosti betonu E_c se příliš od sečnového neliší, např. norma EN 1992-1-1 udává $E_c = 1,05E_{cm}$.

V důsledku hydratačního procesu roste se stářím betonu jeho pevnost a modul pružnosti. Rychlost tohoto procesu závisí na mnoha parametrech, zejména na typu a třídě cementu, na typu a množství přísad, vodním součiniteli a dále na teplotě okolního prostředí. Rychlost hydratace bývá často popisována rovnicí Arrhenia, která udává teoretické stáří betonu, při kterém by zrání dosáhlo stejné úrovni při referenční teplotě (293 K) jako skutečné stáří při skutečné teplotě. Pomocí této rovnice lze dokázat, že zvýšením teploty betonu o 12 až 13 K se zdvojnásobuje rychlost zrání betonu.

![Obr. 3.2 Vývoj modulu pružnosti v čase podle CEB-FIP, 1990](image-url)
Z hlediska praktického použití jsou vhodnější zjednodušené vztahy pro stárnutí betonu, které uvádějí všechny moderní normy. Na Obr. 3.2 je zobrazena závislost modulu pružnosti betonu $E_c(t)$ s pomalu, normálně a rychle tuhnučím cementem na jeho stáří t podle CEB-FIP, 1990 [5]. Podobný průběh má vývoj pevnosti betonu. Z logaritmického měřítka vodorovné osy je zřejmé, že nárůst modulu pružnosti mladého betonu je velmi rychlý (po 28 dnech nabývá více než 80% konečné hodnoty) a postupně se snížuje. Urychlení stárnutí např. zvýšením teploty betonu lze v těchto zjednodušených vzorcích zohlednit náhradním (zvětšeným) stářím betonu.

3.3 Složky přetvoření betonu

Rozdělení poměrného přetvoření (dále přetvoření) na jednotlivé složky je vzhledem k nejistotám popisovaných jevů velmi problematické a názory řady autorů se v tomto ohledu různí. Některá přetvoření bývají uváděna jako součásti jiných složek přetvoření, některá bývají zanedbána. Celkové přetvoření jednoose zatíženého betonového prvku v čase t lze vyjádřit například jako součet následujících složek přetvoření:

$$
\varepsilon_c^e(t) = \varepsilon_c^e(t) + \varepsilon_{ne}^e(t) + \varepsilon_{ed}^e(t) + \varepsilon_{ne,d}^e(t) + \varepsilon_{T}^e(t) + \varepsilon_{s}^e(t),
$$

- $\varepsilon_c^e(t)$ je okamžité pružné (vratné) poměrné přetvoření betonu,
- $\varepsilon_{ne}^e(t)$ je okamžité nepružné (nevratné) poměrné přetvoření betonu,
- $\varepsilon_{ed}^e(t)$ je zpožděné pružné poměrné přetvoření betonu,
- $\varepsilon_{ne,d}^e(t)$ je zpožděné nepružné poměrné přetvoření betonu,
- $\varepsilon_{T}^e(t)$ je poměrné přetvoření betonu od teplotních změn,
- $\varepsilon_{s}^e(t)$ je poměrné přetvoření od smršťování betonu.

Součet pružné $\varepsilon_c^e(t)$ a nepružné $\varepsilon_{ne}^e(t)$ složky okamžitého přetvoření je nezávislou proměnnou pracovního diagramu pro krátkodobé zatížení. Pokud je napětí v betonu menší než přibližně 40 % pevnosti, lze považovat okamžitou nepružnou složku přetvoření za nulovou. V této oblasti platí Hookeův zákon a jedinou nezávislou proměnnou pracovního diagramu zůstává pružné přetvoření ε_c^e vyjádřené jako:

$$
\varepsilon_c^e(t) = \frac{\sigma_c}{E_c(t)},
$$

kde σ_c je napětí působící v betonu a $E_c(t)$ je modul pružnosti betonu. Modul pružnosti však závisí nejen na stáří betonu, ale také na délce časového intervalu, v němž realizovaná přetvoření považujeme za „okamžitá“. Porovnáváme-li tedy způsoby výpočtu reologických účinků podle různých předpisů nebo srovnáváme-li výpočty s měřením, musíme tak činit vždy ve vztahu ke správně určenému modulu pružnosti.
Součet všech složek zpožděných přetvoření je označován jako přetvoření od dotvarování betonu $\varepsilon_c^m(t)$. Podobně jako přetvoření okamžitá (pružná i nepružná) jsou přetvoření od dotvarování vyvolána působením napětí. Označujeme je proto společným názvem přetvoření mechanická $\varepsilon_c^m(t)$. Z výše uvedeného plyne, že platí vztah

$$
\varepsilon_c^m(t) = \varepsilon_c^e(t) + \varepsilon_c^{ne}(t) + \varepsilon_c^{ed}(t) + \varepsilon_c^{ne,d}(t) + \varepsilon_c^d(t)
$$

Naopak přetvoření od smršťování a teplotních změn nejsou bezprostředně způsobena napětím. Proto jejich součet nazýváme nemechanickým přetvořením

$$
\varepsilon_c^{nm}(t) = \varepsilon_c^T(t) + \varepsilon_c^s(t)
$$

Vzhledem k aditivnosti obou těchto složek přetvoření nečiní jejich výpočet u volného (volně se smršťujícího) prvku potíže. U prvků upnutých v konstrukci však může smršťování i teplotní přetvoření vyvolat napjatost, která potom vede k dotvarování betonu.

3.4 Výpočet přetvoření betonu při konstantním napětí

Předpokládejme, že v čase τ od vybetonování začalo na volně se přetvářející betonový prvek působit jednoosé napětí σ_c. Toto napětí způsobí okamžité přetvoření v čase τ a zpožděné přetvoření v časovém intervalu $<\tau,t>$. Vzhledem k nejistotám s určením délky časového intervalu, za který se považují přetvoření za okamžité, je často mechanické přetvoření vyjadřováno vcelku, přičemž je používán vztah

$$
\varepsilon_c^m(t,\tau) = \varepsilon_c^e(\tau) + \varepsilon_c^{ne}(\tau) + \varepsilon_c^{ed}(\tau) + \varepsilon_c^{ne,d}(\tau) + \varepsilon_c^d(\tau)
$$

kde $J(t,\tau)$ je funkce poddajnosti. Vzhledem k tomu, že napětí v betonu způsobená dlouhodobým (stálým) zatížením se u většiny konstrukcí pohybuje v oblasti platnosti Hookeova zákona, nebudeme se v případě řešení účinků dlouhodobě působících zatížení nelineární části pracovního diagramu dále zabývat. Proto můžeme okamžité nenepřeružné přetvoření uvažovat pro stálá zatížení rovno nule. Při uvážení (3) lze psát funkci poddajnosti ve tvaru

$$
J(t,\tau) = \frac{\varepsilon_c^e(\tau) + \varepsilon_c^{ne}(\tau)}{\sigma_c}
$$

a lze využít linearity mezi složkami přetvoření $\varepsilon_c^e(\tau)$ a $\varepsilon_c^{ne}(\tau)$. Konstantou úměrnosti je v tomto případě pro daný časový interval $<\tau,t>$ koeficient dotvarování $\varphi(t,\tau)$. Platí tedy vztah

$$
\varepsilon_c^e(t,\tau) = \varepsilon_c^e(\tau) \cdot \varphi(t,\tau).
$$

Nahradíme-li okamžité pružné přetvoření napětím podle vztahu (2), lze přetvoření od dotvarování vyjádřit pomocí míry dotvarování $C(t,\tau)$

$$
\varepsilon_c^e(t,\tau) = \sigma_c \cdot C(t,\tau).
$$
Všechny výše uvedené veličiny, tedy funkce poddajnosti, koeficient i míra dotvarování se běžně používají v odborné literatuře a v normových předpisech. Porovnáním (6), (7) a (8) získáme vzájemný vztah mezi těmito veličinami

\[J(t,\tau) = \frac{1 + \varphi(t,\tau)}{E_c(\tau)} = \frac{1}{E_c(\tau)} + C(t,\tau). \]

3.5 Výpočet přetvoření betonu při proměnlivém napětí

Princip linearity dotvarování popsáný v kap. 3.4 umožňuje použít princip superpozice při výpočtu přetvoření betonu od napětí proměnlivého v čase. Předpokládejme nejprve, že se napětí mění pouze skokem v diskrétních časových okamžicích (časových uzlech). Celkové poměrné přetvoření od napětí lze pak vypočítat jako součet poměrných přetvoření způsobených jednotlivými přírůstky napětí. Superpozice účinků je řešitelná z Obr. 3.3.

Obr. 3.3 Princip superpozice přetvoření jednoose namáhaného elementu
V čase t_0 začne v betonu působit napětí velikosti $\Delta \sigma_c(t_0)$, které způsobí přírůstek okamžitého přetvoření $\Delta \varepsilon_c^o(t_0)$. Během časového intervalu $<t_0, t_1>$ se působením tohoto napětí vyvinou zpožděné přetvoření $\Delta \varepsilon_c^o(t_1,t_0)$. Přírůstek napětí $\Delta \sigma_c(t_1)$ aplikovaný v časovém uzlu t_1 způsobí přírůstek okamžitého přetvoření $\Delta \varepsilon_c^o(t_1)$ a v průběhu časového intervalu $<t_1, t_2>$ přírůstek zpožděného přetvoření $\Delta \varepsilon_c^o(t_2,t_1)$.

K celkovému přetvoření je však třeba za tento interval připočíst také přírůstek zpožděného přetvoření $\Delta \varepsilon_c^o(t_2,t_1)$ od napětí $\Delta \sigma_c(t_1)$. Pro celkové mechanické přetvoření lze tedy psát

$$\varepsilon_c^m(t_2) = \Delta \varepsilon_c^o(t_2,t_0) + \Delta \varepsilon_c^o(t_1,t_0) + \Delta \varepsilon_c^o(t_2,t_1),$$

kde $\Delta \varepsilon_c^o(t_3,t_0) = \Delta \varepsilon_c^o(t_1,t_0) + \Delta \varepsilon_c^o(t_2,t_1)$.

Poznamenejme, že v důsledku stárnutí betonu dochází k růstu modulu pružnosti (a pevnosti) betonu v čase. Proto $E_c(t_2) > E_c(t_1) > E_c(t_0)$.

Aplikujeme-li princip superpozice pro přírůstky napětí v diskrétních časech $t_0, t_1, t_2, ..., t_n$, pak s využitím vztahu (2) a (7) lze vyjádřit celkové mechanické přetvoření jako

$$\varepsilon_c^m(t) = \sum_{i=0}^{n} \frac{\Delta \sigma_c(t_i)}{E_c(t_i)} \left[1 + \varphi(t,t_i)\right].$$

Jak plyne z tohoto vzorce, závisí mechanické přetvoření v čase t na všech přírůstcích napětí v časech $t_i < t$. Jinými slovy závisí na celé předchozí historii zatížení. To činí výpočet dotvarování časově náročným a klade zvýšené nároky na paměť počítače v případě strojového výpočtu. Na principu časové diskretizace jsou založeny některé numerické metody výpočtu, o nichž bude pojednáno v kapitole týkající se statické analýzy postupně budovaných předpjatých konstrukcí.

Předpokládejme nyní spojitý průběh napětí v čase. Potom lze přírůstek napětí $\Delta \sigma_c(t)$ za časový okamžik $d\tau$ vyjádřit jako

$$\Delta \sigma_c(t) = \frac{d\sigma_c(t)}{d\tau} d\tau$$

a sumační symbol ve vztahu (11) lze nahradit integračním. Vzorec (11) přejde v integrální rovnici

$$\varepsilon_c^m(t) = \frac{\sigma_c(t)}{E_c(t_0)} \left[1 + \varphi(t,t_0)\right] + \int_{t_0}^{t} \frac{d\sigma_c(\tau)}{d\tau} \left(\frac{1}{E_c(\tau)} + \varphi(\tau,t_0) \right) d\tau.$$

Integrál na pravé straně rovnice je v literatuře mnohdy nazýván dědičný, protože postihuje celou historii zatížení betonu. Přetvoření od dotvarování tedy závisí na předchozích přírůstcích napětí v betonu. V případě prvku upnutých v konstrukci však situaci navíc komplikuje závislost přírůstků pružného přetvoření (a tedy i napětí) na velikosti dosavadního přetvoření od dotvarování (také od smršťování, změn teplot a jiných zatížení). Celkové přetvoření podle rovnice (1) je totiž omezeno tuhostí upnutí prvku v konstrukci, přičemž přetvoření...
pružné a přetvoření od dotvarování jsou rovnice (1) vzájemně svázány. Řešení rovnice (13) je proto komplikované a jejího zjednodušení můžeme dosáhnout pouze použitím speciálního tvaru funkce $\phi(t, \tau)$, např. podle teorie stárnutí, viz kap. 3.6.2. To je však na újmu obecnosti řešení.

3.6 Některé reologické modely

Analytické vyjádření funkcí $J(t, \tau)$, $\phi(t, \tau)$ a $C(t, \tau)$ a funkce smršťování bylo v minulosti předmětem zkoumání mnoha vědeckých týmů. Pro úspěšné řešení je třeba zohlednit všechny rozhodující faktory, které ovlivňují reologické vlastnosti betonu. Snaha po maximálním zjednodušení a velký rozptyl výsledků experimentů vedly k odlíšnostem v řešení. Tak se stalo, že jeden fyzikální jev je popsán v literatuře funkcemi exponenciálními, logaritmickými, mocninnými, hyperbolickými nebo jejich kombinacemi. Také v současné době pokračuje snaha o výšíčné vyjádření tohoto jevu. Je využíváno moderních metod matematické statistiky, jimiž se zpracovávají rozsáhlé soubory experimentálních výsledků, přičemž základní tvar modelu je zvolen tak, aby respektoval fyzikální podstatu jevu.

Různé teorie (funkce) dotvarování, které byly postupně vytvořeny je možné rozdělit do tří skupin. Jde o teorii zpožděné pružnosti (někdy označovanou jako teorie následnosti), teorii stárnutí a kombinované teorie. Teorie zpožděné pružnosti a teorie stárnutí jsou důležité zejména z hlediska historického. Navíc definují základní složky dotvarování, které jsou dále využívány v kombinovaných teoriích. S ohledem na přesnost nejsou pro praktické použití příliš vhodné, ačkoliv se doposud v některých normách používají, např. ČSN 73 6207 [8].

3.6.1 Teorie zpožděné pružnosti

Teorie zpožděné pružnosti (teorie následnosti, theory of delayed elasticity) je historicky nejstarší teorii (Boltzmann, 1876). Funkce pro vyjádření koeficientu dotvarování je ve tvaru

\[\varphi(t, \tau) = \varphi(t-\tau) = \varphi_c \left(1 - e^{-B(t-\tau)}\right) \]

kde φ_c je hodnota koeficientu dotvarování pro $t \to \infty$, B je konstanta. Obě veličiny jsou závislé na vlastnostech betonu. Předpokládá se tedy, že stáří betonu při zatížení neovlivňuje konečnou hodnotu dotvarování.

Z Obr. 3.4 je zřejmé, že funkce odpovídající různým časům zatížení jsou pouze vzájemně posunuté ve směru osy t. Velikost přetvoření od dotvarování je závislá pouze na délce zatížení $t-\tau$. Po odtížení dochází v čase blížícímu se nekonečnou k úplné návratnosti deformace. Dotvarování $\varepsilon_c^c(t, \tau)$ se tedy redukuje na zpožděné pružné přetvoření $\varepsilon_c^{ed}(t, \tau)$. Proto není tato teorie vhodná pro beton zatížený ve stáří menším než jeden rok.
3.6.2 Teorie stárnutí

Ve 30. letech 20. století použil Dischinger koeficient dotvarování ve tvaru

$$\varphi(t, \tau) = \varphi(t) - \varphi(\tau),$$

kde \(\varphi(x) = \varphi_\infty (1 - e^{-Bx}) \) pro \(x=t, x=\tau \). Konstanty \(\varphi_\infty \) i \(B \) jsou opět závislé na vlastnostech betonu. Dischinger původně navrhoval \(B=1 \), později bylo používáno \(B=1,6 \) až 2,0. Funkce \(\varphi(t, \tau) \) odpovídající různým časům zatížení jsou opět vzájemně posunuté, tentokrát ve směru svislé osy, viz Obr. 3.5. Stáří betonu při zatížení tedy ovlivňuje konečnou hodnotu dotvarování. Teorii však podhodnocuje dotvarování starého betonu. Dalším nedostatkem je, že se zanedbává vratná část přetvoření. Dotvarování se tak redukuje pouze na zpožděné nepružné přetvoření \(\varepsilon_{c,n,d}^{ne.d}(t, \tau) \).

Pro svou jednoduchost byla teorie stárnutí (rate-of-creep theory) velmi oblíbená a je doposud používána v platných českých normových předpisech. Jde především o ČSN 73 6207 [8] s úpravou koeficientu dotvarování podle Mörsche

$$\varphi(x) = \varphi_\infty \sqrt{1 - e^{-\sqrt{x}}}$$

a o zjednodušenou funkci podle ČSN 73 1201 [7] ve tvaru
Průvodce předmětem

(17) \(\varphi(x) = \varphi_{\infty}(1 - e^{-0.07\sqrt{x}}) \).

Pro analýzu mostních konstrukcí středních a velkých rozpětí však nelze použít Mörschovy funkce doporučit, přestože je uváděna výše citovanou normou. Vhodnější je v tomto případě použít některou z kombinovaných teorií.

3.6.3 Kombinované teorie

Chyby teorie stárnutí a teorie zpožděné pružnosti byly odstraněny použitím kombinovaných teorií (modelů), které zohledňují stáří betonu při zatížení i reverzibilitu části dotvarování. Moderní kombinované teorie dotvarování popisují mechanické přetvoření buď vcelku, pomocí funkce poddajnosti, nebo udávají předpis pro koeficient dotvarování. Podle tvaru funkce pro koeficient dotvarování lze teorie rozdělit na součinové a součtové modely.

Součinové modely používají koeficient dotvarování ve tvaru

(18) \(\varphi(t, \tau) = f_0(\tau) \cdot f(t - \tau) \),

kde \(f_0(\tau) \) je monotónně klesající funkce a \(f(t - \tau) \) je monotónně rostoucí funkce. Dotvarování je tedy určeno jako součin základního koeficientu dotvarování, který závisí na stáří betonu při zatížení a funkce popisující průběh dotvarování v čase. Součinový tvar je použit v modelech ACI Committee 209 [2], CEB – FIP 1990 [5], EN 1992-1-1 [11] a zpřesněném modelu podle přílohy č. 4 ČSN 73 1201 [7].

Součtové modely vyjadřují celkové dotvarování jako součet jednotlivých jeho složek, zejména pak zpožděné pružnosti a zpožděného nevratného přetvoření

(19) \(\varphi(t, \tau) = f_d(t - \tau) + [f_f(t) - f_f(\tau)] \),

kde \(f_d(t - \tau) \) vyjadřuje zpožděnou pružnost a \([f_f(t) - f_f(\tau)] \) odpovídá zpožděnému nevratnému přetvoření. Součtový tvar koeficientu dotvarování se používá v předpisech DIN 1045 [11], CEB-FIP 1978 [6].

V dalším se omezíme pouze na naznačení tvarů základních modelů doporučovaných významnými mezinárodními organizacemi, z nichž ve většině případů vycházejí národní normové předpisy. Podrobný popis těchto relativně složitých modelů není účelem tohoto učebního textu a je možné jej nalézt v citované literatuře.

ACI Committee 209 [2] uvádí pro funkci dotvarování poměrně jednoduchý vztah

(20) \(J(t, \tau) = \frac{1}{E_c(\tau)} \left[1 + C_a \frac{(t - \tau)^{0.6}}{10 + (t - \tau)^{0.6}} \right] \),
kde C, je součinitel závislý na čase τ a na okolním prostředí. Modul pružnosti je odvozen z válcové pevnosti a objemové hmotnosti betonu. Předpokládá se, že složka ε^d_c je zahrnuta v okamžité elastické deformaci. Proto má modul pružnosti relativně menší hodnotu.

$$
(21) \quad \varphi(t, \tau) = \varphi_0(\tau) \left[\frac{t - \tau}{\beta_{H,T} + t - \tau} \right]^{0.3}.
$$

Součinitele φ_0 a $\beta_{H,T}$ jsou závislé na stáří betonu při zatížení, pevnosti betonu, vlhkosti a teplotě okolního prostředí a dalších vlastnostech betonu.

Dotvarování a smršťování jsou rozděleny na aditivní složky. K základnímu dotvarování lze přičíst dotvarování při vysychání. Podobně smršťování sestává z autogenního smršťování a smršťování od vysychání. Model je použitelný pro vlhkost okolního prostředí do 80%.

Model umožňuje aproximaci funkce dotvarování i smršťování z naměřených hodnot poměrných přetvoření a extrapolaci těchto funkcí v čase.

Model CEB-FIP 1978 [6] v součtovém tvaru pochází z konce sedmdesátých let, přesto je i v současné praxi velmi často používán. Součinitel dotvarování je definován vztahem

$$
(22) \quad \varphi(t, \tau) = \beta_s(\tau) + \varphi_0 \beta_d(t - \tau) + \varphi_f[\beta_f(t) - \beta_f(\tau)],
$$

kde první člen představuje složku přetvoření ε^d_c ze vztahu (1), druhý člen zpožděné pružné přetvoření a třetí člen zpožděné nepružné přetvoření. Vzhledem k tomu, že zpožděné přetvoření vznikající velmi brzy po zatížení je zahrnuto v součiniteli dotvarování, vycházejí hodnoty modulů pružnosti poměrně dosti vysoké.

Z hlediska výpočtu je třeba upozornit, že funkce dotvarování $\varphi(t, \tau)$ podle modelů CEB-FIP jsou vztaženy k poměrnému elastickému přetvoření, které by působící napětí vyvodilo v betonu starém 28 dnů. Funkce poddajnosti je tedy ve tvaru
\[J(t, \tau) = \frac{1}{E_c(\tau)} + \frac{1}{E_c(28)} \varphi_{CEB}(t, \tau), \]

kde \(E_c(\tau) \) je tečnový modul pružnosti v čase \(\tau \) a \(E_c(28) \) je tečnový modul pružnosti ve stáří betonu 28 dnů. Proto se při výpočtu dotvarování podle vzorce (11) (obdobně (7)) musí funkce dotvarování modifikovat podle vztahu

\[\varphi(t, t_c) = \varphi_{CEB}(t, t_c) \frac{E_c(t_c)}{E_c(28)}. \]

Modely BP a BP-KX používají pro základní dotvarování mocninou funkci. Základní dotvarování modelu B3 již obsahuje tři složky reprezentující jak komponenty viskoelastické (zpožděně pružné) se stárnutím a bez stárnutí, tak komponentu vazkou (zpožděná nepružná). Model B3 lze psát ve tvaru

\[J(t, \tau) = \frac{1}{E_{ca}} + C_0(t, \tau) + C_d(t, \tau, t'), \]

kde \(E_{ca} \) je empirický parametr nazývaný asymptotický modul pružnosti (limitní tečnový modul pro \(t \rightarrow \tau \) nezávislý na stáří betonu). \(C_0(t, \tau) \) je základní dotvarování, což je dotvarování při konstantní vlhkosti, \(C_d(t, \tau, t') \) je dotvarování při vysychání, \(t \) je stáří betonu, ve kterém zjišťujeme přetvoření, \(\tau \) je stáří betonu v okamžiku zatížení a \(t' \) je stáří betonu v okamžiku změny vlhkosti. Model obsahuje rozšíření pro dotvarování za vysokých teplot, za mnohokrát opakovaného cyklického zatížení a cyklické vlhkosti. B3 byl prvním modelem, který umožňuje (doposud pravděpodobně nejkrálitnější) aproximaci funkce dotvarování z naměřených hodnot poměrných přetvoření, její extrapolaci v čase i extrapolaci z laboratorních vzorků na skutečnou konstrukci, viz [4], [16]. Jistou nevýhodou modelu se může zdát jeho relativní složitost. Uvědomíme-li si však skutečnost, že analýza moderních konstrukcí je prováděna s pomocí výpočetní techniky a příslušného software, není složitost modelu velkou překážkou.

Při srovnání jednotlivých modelů s experimenty je zřejmé, že přes velký počet v této oblasti je rozptyl výsledků stále příliš veliký. Problematické je už předpoklad průměrné hodnoty dotvarování a smršťování po příčném řezu, dále pak stanovení hodnoty modulu pružnosti a hodnoty koeficientu dotvarování ze složení betonu, případně z jeho pevnosti. Je zřejmé, že výběr typu modelu dotvarování je pro přesnost výsledku velmi důležitý. Pro konkrétní model je potom rozhodující pečlivý rozbore jednotlivých parametrů ovlivňujících dotvarování a smršťování. Při analýze jedinečných konstrukcí citlivých na reologické jevy je dále velmi vhodné snížit nejistoty spojené s reologickým působením
betonu upřesněním použitých funkcí podle výsledků laboratorních testů a ověřit je měřením na stavbě.

3.7 Příklady výpočtu dotvarování, kontrolní otázky

V této kapitole naleznete praktický výpočet dotvarování betonu s vlivem historie zatížení, úkoly k procvičení teorie a kontrolní otázky.

Doba potřebná k procvičení látky by neměla být delší než 4 hodiny.

Úkol 3.1

Odvoďte vzájemný vztah mezi veličinami: funkce poddajnosti, koeficient dotvarování a míra dotvarování.

Úkol 3.2

Graficky znázorněte princip superpozice přetvoření jednoose namáhaného elementu a odvoďte vzorec pro celkové mechanické přetvoření.

Úkol 3.3

Dokažte, že v případě teorie stárnutí není možné respektovat vliv historie zatížení na dotvarování betonu.

Řešení

Výsledek řešení úkolu 3.1 je uveden v kapitole 3.4, vzorec (9).

Výsledek řešení úkolu 3.2 je uveden v kapitole 3.5 na Obr. 3.3. Výsledné vzorce jsou vzorce (11) a (13).

Řešení úkolu 3.3 spočívá ve vyčíslení přírůstku poměrného přetvoření v časovém intervalu \(<t_1, t_2> \) od dotvarování jednoose namáhaného elementu zatíženého v čase \(t_0 \) přírůstkem napětí o velikosti \(\Delta \sigma_c(t_0) \) a v čase \(t_1 \) přírůstkem napětí \(\Delta \sigma_c(t_1) \), viz Obr. 3.3. Přetvoření od dotvarování v čase \(t_1 \)

\[
(26) \quad \varepsilon_c^e(t_1) = \Delta \varepsilon_c^{e0}(t_1, t_0) = \Delta \varepsilon_c^{e0}(t_0) \cdot \varphi(t_1, t_0)
\]

a v čase \(t_2 \)

\[
(27) \quad \varepsilon_c^e(t_2) = \Delta \varepsilon_c^{e0}(t_2, t_0) + \Delta \varepsilon_c^{e1}(t_2, t_1) = \Delta \varepsilon_c^{e0}(t_0) \cdot \varphi(t_2, t_0) + \Delta \varepsilon_c^{e1}(t_1) \cdot \varphi(t_2, t_1)
\]

Přírůstek poměrného přetvoření v časovém intervalu \(<t_1, t_2> \) od dotvarování se získá odečtením rovnice (26) od rovnice (27)

\[
(28) \quad \Delta \varepsilon_c^e(t_2, t_1) = \Delta \varepsilon_c^{e0}(t_0) \cdot (\varphi(t_2, t_0) - \varphi(t_1, t_0)) + \Delta \varepsilon_c^{e1}(t_1) \cdot \varphi(t_2, t_1)
\]

Zavedeme-li pro funkci dotvarování speciální tvar pro teorii stárnutí podle vzorce (15) do rovnice (28), získáme rovnici
\[
\Delta \varepsilon^c(t_2,t_1) = \Delta \varepsilon^c(t_0) \cdot (\varphi(t_2) - \varphi(t_0)) +
+ \Delta \varepsilon^c(t_1) \cdot (\varphi(t_2) - \varphi(t_1))
\]

\[
\Delta \varepsilon^c(t_2,t_1) = \Delta \varepsilon^c(t_0) \cdot (\varphi(t_2) - \varphi(t_1)) + \Delta \varepsilon^c(t_1) \cdot (\varphi(t_2) - \varphi(t_1))
\]
(29) \[\Delta \varepsilon^c(t_2,t_1) = (\Delta \varepsilon^c(t_0) + \Delta \varepsilon^c(t_1)) \cdot (\varphi(t_2) - \varphi(t_1))\]

Součet přírůstků okamžitého přetvoření \(\Delta \varepsilon^c(t_0) + \Delta \varepsilon^c(t_1)\) udává celkové okamžitého poměrného přetvoření v čase \(t_1\). Z toho vyplývá, že během časového intervalu \(<t_1, t_2>\) závisí zpožděné přetvoření od dotvarování pouze na celkové hodnotě okamžitého poměrného přetvoření, nikoliv na jeho přírůstcích a tedy na historii zatížení. V případě teorie stárnutí tedy není možné respektovat vliv historie zatížení na dotvarování betonu.

Příklad 3.1

Vypočtěte poměrné přetvoření od dotvarování betonu třídy C60/75 osově namáhaného prvku o průřezové ploše \(A_c=0,04 \text{ m}^2\), který je zatížen silou 3\(P\) aplikovanou postupně ve dvou krocích dle Obr. 3.6 tak, že:

- ve stáří betonu \(t_0\) je prvek zatížen silou 2\(P\) a ve stáří \(t_1\) silou \(P\) (historie zatížení 1),
- ve stáří betonu \(t_0\) je prvek zatížen silou \(P\) a ve stáří \(t_1\) silou 2\(P\) (historie zatížení 2).

Srovnajte přírůstky poměrného přetvoření od dotvarování betonu za časový interval \(<t_1,t_2>\) pro modely dotvarování dle norem [8] a [13].

Uvažujte \(P=250\ \text{kN}\), \(t_0=4\ \text{dny}\), \(t_1=1000\ \text{dnů}\), \(t_2=36\ 500\ \text{dnů}\) a cement třídy \(R\).

\[
\begin{align*}
\text{Historie 1:} & \quad 2P + P = 3P \\
\text{Historie 2:} & \quad P + 2P = 3P
\end{align*}
\]

Obr. 3.6 Příklad výpočtu dotvarování s vlivem historie zatížení
Řešení

Úkolem je určit poměrné přetvoření od dotvarování betonu, proto se nebudeme dále zabývat smršťováním prvku.

Pro beton třídy C60/75 je charakteristická hodnota válcové pevnosti betonu v tlaku $f_{ck} = 60$ MPa. Tato hodnota se uvádí ve stáří betonu 28 dní.

Střední hodnota (28 denní) válcové pevnosti betonu v tlaku $f_{cm} = f_{ck} + 8 = 68$ MPa. Sečnový modul pružnosti E_{cm} určíme z tab. 3.1 EN 1992-1-1 [12] pomocí vzorce

$$E_{cm} = 22\left(\frac{f_{cm}}{10}\right)^{0.3},$$

přičemž f_{cm} je v MPa. Vstupní údaje (červeně) a z nich určená základní data úlohy jsou uvedena v Tab. 3-1

<table>
<thead>
<tr>
<th>P [kN]</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P [kN]</td>
<td>500</td>
</tr>
<tr>
<td>A_c [m²]</td>
<td>0,04</td>
</tr>
<tr>
<td>obvod průřezu vystavený vzduchu u [m]</td>
<td>0,8</td>
</tr>
<tr>
<td>vysychající obvod h_0</td>
<td>100 mm</td>
</tr>
<tr>
<td>f_{ck} [MPa]</td>
<td>60</td>
</tr>
<tr>
<td>f_{cm} [MPa]</td>
<td>68</td>
</tr>
<tr>
<td>cement třídy</td>
<td>R</td>
</tr>
<tr>
<td>relativní vlhkost vzduchu RH</td>
<td>60 %</td>
</tr>
<tr>
<td>E_{cm} (ve 28 dnech) [GPa]</td>
<td>39,09987</td>
</tr>
<tr>
<td>s (druh cementu)</td>
<td>0,2</td>
</tr>
<tr>
<td>křemičitý úlet</td>
<td>ANO</td>
</tr>
</tbody>
</table>

Tab. 3-1 Vstupní data úlohy

Pro výpočet dalších potřebných veličin uvedeme pouze použité vzorce, přičemž údaje se uvedou v tabulce Tab. 3-2, viz níže.

$$\beta_{cc}(t) = \exp\left(s \left[1 - \left(\frac{28}{t}\right)^{1/2}\right]\right),$$

kde koeficient s je závislý na druhu cementu, pro cement třídy R je $s=0,2$.

$f_{cm}(t) = \beta_{cc}(t) f_{cm}$.

$$f_{ck}(t) = f_{cm}(t) - 8 \ [MPa] \quad \text{pro} \quad 3 < t < 28 \text{ dni, resp.}$$

$$f_{ck}(t) = f_{ck} \quad \text{pro} \quad t \geq 28 \text{ dni}$$

Podle 3.1.3 (3) [12] dále platí

$$E_{cm}(t) = \left(f_{cm}(t)/f_{cm}\right)^{0.3} E_{cm}$$

Vzhledem k tomu, že součinitel dotvarování, $\varphi(t,t_0)$ se vztahuje k tečnovému modulu E_c, vypočteme jej jako 1,05 E_{cm}, viz 3.1.4 (2) [12].
Článek 3.1.4 (4) [12] uvádí, že pokud tlakové napětí v betonu přestoupí hodnotu $0.45 f_{ck}(t)$, pak se má uvažovat nelineární dotvarování. Kontrolu dosaženého tlakového napětí $\sigma_c(t)$ provedeme výpočtem v Tab. 3-3 (pro historii zatížení 1) a Tab. 3-4 (historie zatížení 2). V těchto tabulkách vypočteme rovněž přírůstek pružného přetvoření $\Delta \varepsilon_c(t)$ pomocí vzorce (2).

Porovnáním údajů na řádcích 4 a 1 (vždy ve stejných sloupcích) tabulek vyplývá, že není třeba uvažovat nelineární dotvarování.

Dále je třeba vypočítat součinitele dotvarování. Výpočet provedeme v Tab. 3-5 včetně výpočtu poměrného přetvoření od smršťování, i když hodnoty smršťování bezprostředně pro naše zadání úlohy nepotřebujeme.

V Tab. 3-5 je výpočet proveden pro jednotlivé časové intervaly vždy po sloupcích. Ve snaze umožnit čiteli kontrolu při vlastním numerickém vý-

Tab. 3-2 Výpočet základních pevnostních a deformačních charakteristik betonu

<table>
<thead>
<tr>
<th>sloupec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>řádek</td>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>t₂</td>
</tr>
<tr>
<td>1</td>
<td>stáří betonu [dny]</td>
<td>4</td>
<td>1000</td>
<td>36500</td>
</tr>
<tr>
<td>2</td>
<td>$\beta_{cc}(t)$</td>
<td>0,720</td>
<td>1,181</td>
<td>1,215</td>
</tr>
<tr>
<td>3</td>
<td>$f_{cm}(t)$ [MPa]</td>
<td>48,928</td>
<td>80,322</td>
<td>82,597</td>
</tr>
<tr>
<td>4</td>
<td>$f_{ck}(t)$ [MPa]</td>
<td>40,928</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>5</td>
<td>$E_{cm}(t)$ [GPa]</td>
<td>35,423</td>
<td>41,103</td>
<td>41,449</td>
</tr>
<tr>
<td>6</td>
<td>$E_{e}(t)$ [GPa]</td>
<td>37,195</td>
<td>43,158</td>
<td>43,521</td>
</tr>
</tbody>
</table>

Tab. 3-3 Výpočet napětí a pružného přetvoření v betonu, historie zatížení 1

<table>
<thead>
<tr>
<th>sloupec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>řádek</td>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>t₂</td>
</tr>
<tr>
<td>1</td>
<td>$0.45f_{ck}(t)$ [MPa]</td>
<td>18,418</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>přírůstek síly [kN]</td>
<td>500</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\Delta \sigma_c(t)$ [MPa]</td>
<td>12,5</td>
<td>6,25</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$\sigma_c(t)$ [MPa]</td>
<td>12,5</td>
<td>18,75</td>
<td>18,75</td>
</tr>
<tr>
<td>5</td>
<td>$\Delta \varepsilon_c(t) \times 10^3$</td>
<td>0,33607</td>
<td>0,144816</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 3-4 Výpočet napětí a pružného přetvoření v betonu, historie zatížení 2

<table>
<thead>
<tr>
<th>sloupec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>řádek</td>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>t₂</td>
</tr>
<tr>
<td>1</td>
<td>$0.45f_{ck}(t)$ [MPa]</td>
<td>18,418</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>přírůstek síly [kN]</td>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\Delta \sigma_c(t)$ [MPa]</td>
<td>6,25</td>
<td>12,5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$\sigma_c(t)$ [MPa]</td>
<td>6,25</td>
<td>18,75</td>
<td>18,75</td>
</tr>
<tr>
<td>5</td>
<td>$\Delta \varepsilon_c(t) \times 10^3$</td>
<td>0,168035</td>
<td>0,289633</td>
<td>0</td>
</tr>
</tbody>
</table>
počtu uvádíme velké množství desetinných míst. Takto vysoký počet není při praktickém výpočtu odůvodněn. Vzorce pro součinitel $\beta_{cc}(t)$, $f_{cm}(t)$ a $E_{cm}(t)$ jsou uvedeny výše. Další vzorce lze nalézt v příloze B EN 1992-2 [13], pro úplnost je však zde uvedeme.

Hodnota součinitele základního dotvarování betonu se určí ze vzorce

\begin{equation}
\varphi_{d}(t, \tau) = \varphi_{d0} \left[\sqrt{t - \tau} - t_{0} / \sqrt{t + \beta_{bc}} \right], \text{kde}
\end{equation}

pro beton s mikroplnivem z křemičitého úletu

\begin{equation}
\varphi_{d0} = \frac{3,6}{f_{cm}(\tau)^{0,37}},
\end{equation}
\begin{equation}
\beta_{bc} = 0,37 \exp \left(2,8 \frac{f_{cm}(\tau)}{f_{ck}} \right),
\end{equation}
pro beton bez mikroplniva z křemičitého úletu

\begin{equation}
\varphi_{d0} = 1,4,
\end{equation}
\begin{equation}
\beta_{bc} = 0,4 \exp \left(3,1 \frac{f_{cm}(\tau)}{f_{ck}} \right).
\end{equation}

Přetvoření od smršťování vysycháním se vypočte jako

\begin{equation}
\epsilon_{cd}^{s}(t) = \frac{K(f_{ck}) \left[72 \exp(-0,046 f_{ck}) + 75 - RH \right] (t - t_{a}) 10^{-6}}{(t - t_{a}) + \beta_{cd} h_{0}^{2}},
\end{equation}
kde: \(K(f_{ck}) = 18\) pro $f_{ck} \leq 55$ MPa \(K(f_{ck}) = 30 - 0,21 f_{ck}\) pro $f_{ck} > 55$ MPa.

\(\beta_{cd} = 0,007\) pro beton s mikroplnivem z křemičitého úletu, \(\beta_{cd} = 0,021\) pro beton bez mikroplniva z křemičitého úletu.

Dotvarování při vysychání je vyjádřeno pomocí smršťování od vysychání za stejný časový interval. Součinitel dotvarování při vysychání je možné vyjádřit pomocí následující rovnice

\begin{equation}
\varphi_{d}(t, \tau) = \varphi_{d0} \left[\epsilon_{cd}^{s}(t) - \epsilon_{cd}^{s}(\tau) \right], \text{kde}
\end{equation}

\(\varphi_{d0} = 1000\) pro beton s mikroplnivem z křemičitého úletu a \(\varphi_{d0} = 3200\) pro beton bez mikroplniva z křemičitého úletu.
Pro úplnost uvedeme i vztahy pro výpočet přetvoření od autogenního smršťování.

Pro \(t < 28 \) dní:

\[
(37) \quad \text{když } \frac{f_{cm}(t)}{f_{ck}} < 0,1, \quad \varepsilon_{ca}^s(t) = 0,
\]
když \[\frac{f_{cm}(t)}{f_{ck}} \geq 0,1 \quad \varepsilon_{ca}^{s}(t) = (f_{ck} - 20) \left(2,2 \frac{f_{cm}(t)}{f_{ck}} - 0,2 \right) 10^{-6}, \]

kde \(\varepsilon_{ca}^{s} \) je autogenní smršťování, které proběhlo mezi počátkem tuhnutí betonu a časem \(t \). Hodnotu pevnosti \(f_{cm}(t) \) je možné stanovit podle 3.1.2(6) EN 1992-1-1.

Pro \(t \geq 28 \) dní:

\[\varepsilon_{ca}^{s}(t) = (f_{ck} - 20)(2,8 - 1,1 \exp(-t / 96)) 10^{-6}. \]

Zpožděné poměrné přetvoření od napětí \(\varepsilon_{c}^{c}(t,t_0) \), tzn. součet základního dotvarování a dotvarování při vysychání, je možné podle EN 1992-2 [13] vy- počítat z následujícího vztahu

\[\varepsilon_{c}^{c}(t) = \frac{\sigma_{c}(t)}{E_{c}} \phi(t) = \frac{\sigma_{c}(t)}{E_{c}} [\varphi_{b}(t) + \varphi_{o}(t, \tau)] \]

S ohledem na to, že ve jmenovateli je tečný modul pružnosti ve stáří betonu 28 dní, je \(\phi(t) \) vztáženo k \(E(28) \) a tudíž je třeba provést přepočet součinitele dotvarování podle (24).

Hodnoty součinitele dotvarování \(\varphi(t, \tau) \) vztážené k \(E(\tau) \) jsme pro přehlednost přepsali do řádků 1 tabulek Tab. 3-6 a Tab. 3-7. V těchto tabulkách vypočteme pro obě historie zatížení nejprve celkové poměrné přetvoření od dotvarování betonu v časech \(t_1 \) a \(t_2 \) (řádky 2 a 3) vždy zvláště pro každý přírůstek pružného poměrného přetvoření podle vzorce (7), viz též (26) a (27). Na řádcích 3 tedy musíme provést vždy dva výpočty pro přírůstek pružného poměrného přetvoření časech \(t_0 \) a \(t_1 \) a hodnoty sečíst (sloupec 5). Přírůstek poměrného přetvoření od dotvarování betonu za časový interval \(<t_1,t_2> \) potom určíme jako rozdíl celkových poměrných přetvoření od dotvarování (řádek 3 minus řádek 2 ve sloupci 5). Výpočet jsme mohli provést rovněž přímo pomocí vzorce (28).

Srovnáním hodnot na řádku 4, sloupce 5 obou tabulek Tab. 3-6 a Tab. 3-7 zjistíme, že přírůstek poměrného přetvoření od dotvarování betonu za časový interval \(<t_1,t_2> \) se v případě modelu dle EN 1992-2 [13] pro obě historie zatížení velmi liší, přestože od času \(t_1 \) působí v obou případech již stejně síly. Ze vzorce (29) je naopak zřejmé, že podle normy ČSN 73 6207 [8] by byly pro obě historie zatížení tyto hodnoty totožné. Model dle ČSN 73 6207 tedy nerespektuje vliv historie zatížení na dotvarování betonu!
Kontrolní otázky

Co je modul pružnosti betonu a jak se mění se stářím betonu?

Jaká je fyzikální podstata dotvarování a smršťování betonu?

Jak se vypočítá přetvoření od dotvarování betonu při konstantním a pro-
měnlivém dlouhodobě působícím napětí?

Vysvětlete rozdíly mezi teorií zpožděné pružnosti a teorií stárnutí. Jaké znáte
kombinované teorie?
4 Statická analýza postupně budovaných betonových a předpjatých konstrukcí

4.1 Nehomogenita konstrukcí

V důsledku dotvarování a smršťování může dojít ke zvětšování deformací konstrukce a k přerozdělení napětí mezi jednotlivými nosnými prvky příčného řezu či celé konstrukce. Tyto účinky se projevují v různé míře u různých druhů konstrukcí, materiálů a výrobních postupů. Vzhledem k relativní složitosti reologických jevů byla v minulosti snaha kategorizovat řešené úlohy a pro ty potom hledat přijatelná zjednodušená řešení. Při dalším výkladu se pokusíme nejen podat přehled o typech úloh citovaných v literatuře, ale dále tuto kategorizaci rozvinout, zobecnit některé dříve publikované teoretické závěry dnes již povazované za východiskové principy a dát doporučení pro obecná řešení zkoumaného problému.

Při úvahách o účincích dotvarování na konstrukce se zejména ve starší odborné literatuře často objevuje pojem "homogenní konstrukce". Konstrukce je označována jako homogenní, má-li z hlediska dotvarování ve všech svých místech stejné vlastnosti. Přesněji lze homogenní konstrukci definovat jako konstrukci, která dotvaruje v každém svém bodě stejně rychle.

Tyto naše úvahy jsou v souladu s tvrzením tzv. první věty Collonnettiho (1941). Ta říká, že je-li homogenní konstrukce zatížena stálým, v čase neměnným zatížením, mění se pouze deformace konstrukce, napjatost zůstává konstantní.

V případě "nehomogenní konstrukce" je tedy v jisté části (v jistém bodě) konstrukce rychlost dotvarování jiná než v ostatních částech. Vzhledem k rozdílným rychlostem dotvarování mají různě části konstrukce tendencí přetvářet se různě. Na stycích těchto částí (vrstev) je bráněno "volné" deformaci, takže dochází k přerozdělení napětí. Příčin nestejné rychlosti dotvarování může být celá řada, například:

- Rozdílná historie napětí, která vyplývá většinou ze změn statického působení v průběhu montáže, ze změn zatížení a poklesů podpor.
- Rozdílné stáří betonu různých částí konstrukce.
- Kombinace betonu s ocelí, popř. s jinými druhy materiálu (rovněž na beton s trhlinami lze nazírat jako na zvláštní materiál).
- Dlouhodobě působící rozdílné teploty (nad 30 °C) různých částí konstrukce.
- Rozdílné vysychání různých částí konstrukce dané rozdílnou vlhkostí jejich okolního prostředí, či jejich rozdílnými dimenzemi.

Tyto příčiny nestejné rychlosti dotvarování můžeme označit jako zdroje nehomogenit konstrukce. O historii napětí jako zdroji redistribuce napětí pojednává v mírně pozměněné formě také druhá Collonnettiho věta: **je-li homogenní konstrukce zatížena v čase konstantním či proměnlivým zatěžovacím pohybem (např. pokles podpor ...), mění se napjatost konstrukce.** Na změny statického systému a poklesy podpor tedy není nahlíženo jako na vlastnost konstrukce, praktický důsledek věty ovšem zůstává stejný. Výše uvedené zdroje nehomogenit se v tomto smyslu dají považovat za rozšíření druhé Colonnettiho věty.

Jako příklad změny napjatostí konstrukce v čase uvedeme redistribuci vnitřních sil vyvolanou poklesem podpory. Obr. 4.1. Pokles podpory v čase t_0 způsobí mimo jiné snížení příslušné reakce a přírůstek nadpodporového momentu. Po poklesu se předpokládá fixace deformace (podpora dále už neklesá) a v důsledku relaxace dojde k postupnému snižování vnesených impulsů. O tom, zda daný impuls vymizí zcela nebo jen částečně rozhoduje kapacita dotvarování (hodnota koeeficientu dotvarování $\varphi(t_0, t)$, která se snižuje mj. se zvyšujícím se stářím betonu při zatížení t_0. V případě dostatečné ka-
pacitě dotvarování² (resp. relaxace) by reakce vnitřní podpory nabyla původní hodnoty a přírůstek ohybového momentu nad podporou by vymizel.

4.2 Řešení reologických účinků na konstrukce v uzavřené formě

Jak je uvedeno v kap. 3, k reologickým účinkům ovlivňujícím dlouhodobé chování předpjeté betonové konstrukce lze počítat dotvarování, smršťování a stárnutí betonu. Jde o jevy velmi složité působící ve vzájemné interakci. Řešení v analytické uzavřené formě je možné jen za určitých omezených předpokladů.

Základním předpokladem řešení je zanedbání vzájemné interakce dotvarování, smršťování a stárnutí betonu. Tyto tři jevy budeme tedy v této kapitole řešit odděleně a jejich účinky budeme sčítat. Jak již bylo konstatovalo v kap. 3.3, nezávisí smršťování betonu na historii zatížení a jeho účinky na konstrukci lze řešit jako běžné deformační zatížení, které lze superponovat. Stárnutí betonu spočívá ve změně (růstu) modulu pružnosti v čase a na konstrukci se projeví zvyšováním tuhosti řešených prvků konstrukce. Pro zjednodušení výpočtu se v případě hledání analytického řešení uvažuje modul pružnosti konstantní a stárnutí se tak zanedbává. Nejsložitější částí častočné analýzy konstrukce tak zůstává analýza účinků dotvarování.

Podstatou řešení účinků dotvarování betonu je řešení integrační rovnice (13). Použijeme-li pro řešení integraci per-partes, získejme tvar

² Některé modely nemají konečnou (asymptotickou) hodnotu dotvarování v čase nekonečno, viz kap. 3.6.3.
(41) \[\varepsilon_{e}^m(t) = \frac{\sigma_{e}(t)}{E_{e}(t)} \left[\varphi(t, t_{0}) + \int_{t_{0}}^{t} \frac{1}{E_{e}(\tau)} \varphi(t, \tau) \, d\tau \right] - \frac{\sigma_{c}(\tau)}{E_{e}(\tau)} \left[\int_{t_{0}}^{t} \frac{1}{E_{e}(\tau)} + \frac{\varphi(t, \tau)}{E_{e}(\tau)} \right] \frac{d\tau}{d\tau_{0}} \]

\[- \int_{t_{0}}^{t} \sigma_{e}(\tau) \frac{d}{d\tau} \left(\frac{1}{E_{e}(\tau)} + \frac{\varphi(t, \tau)}{E_{e}(\tau)} \right) \, d\tau \]

a po dosazení horní a dolní meze do primitivní funkce a úpravě

(42) \[\varepsilon_{e}^m(t) = \frac{\sigma_{e}(t)}{E_{e}(t)} - \int_{t_{0}}^{t} \sigma_{e}(\tau) \frac{1}{E_{e}(\tau)} \frac{d\varphi(t, \tau)}{d\tau} \, d\tau . \]

Za předpokladu \(E=\text{konst} \) a po provedení naznačené derivace lze (42) upravit na tvar

(43) \[\varepsilon_{e}^m(t) = \frac{\sigma_{e}(t)}{E_{e}(t)} - \frac{1}{E_{e}(t_{0})} \int_{t_{0}}^{t} \sigma_{e}(\tau) \frac{d\varphi(t, \tau)}{d\tau} \, d\tau . \]

Uvažme dále předpoklad teorie stárnutí (15). Potom

(44) \[\frac{d(\varphi(t) - \varphi(\tau))}{d\tau} = \frac{d\varphi(\tau)}{d\tau} . \]

Závislost \(\varphi(\tau) \) na \(\tau \) je jednoznačná, spojitá a stále rostoucí. V (43) proto lze zaměnit integrační proměnná \(\tau \) za proměnnou \(\varphi(\tau) \). Bez změny mezi tak výraz přejde v

(45) \[\varepsilon_{e}^m(t) = \frac{\sigma_{e}(t)}{E_{e}(t)} - \frac{1}{E_{e}(t_{0})} \int_{\varphi(t_{0})}^{\varphi(t)} \sigma_{e}(\tau) \, d\varphi(\tau) . \]

Derivováním podle \(\varphi \) se získá diferenciální rovnice

(46) \[\frac{d\varepsilon_{e}^m(t)}{d\varphi(\tau)} = \frac{1}{E_{e}} \left(\frac{d\sigma(\tau)}{d\varphi(\tau)} + \sigma(\tau) \right) . \]

Z obtížně řešitelné integrální rovnice (13) jsme tak získali diferenciální rovnici (46) za pomoci předpokladu teorie stárnutí a konstantního modulu pružnosti betonu v čase. Tuto diferenciální rovnici řešíme dále pro dané okrajové podmínky. V příkladě z Obr. 4.1 jde například o případ konstantní deformace \(\varepsilon_{e}^m=\text{konst} \). Proto pro rychlost mechanického přetvoření platí

(47) \[\frac{d\varepsilon_{e}^m(t)}{d\varphi(\tau)} = 0 . \]

Z rovnic (46) a (47) potom vyplývá

(48) \[\frac{d\sigma(\tau)}{d\varphi(\tau)} = -\sigma(\tau) , \]

(49) \[\frac{d\sigma(\tau)}{\sigma(\tau)} = -d\varphi(\tau) . \]

Rovnici (49) lze integrovat
Vybrané statě z betonových konstrukcí I, Modul M01

(50) \[\int_{\sigma(t_0)}^{\sigma(t)} \frac{d\sigma(\tau)}{\sigma(\tau)} = -\int_{\varphi(t_0)}^{\varphi(t)} d\varphi(\tau). \]

Po integraci získáme vztah

(51) \[\ln|\sigma(t)| = \ln|\sigma(t_0)| - (\varphi(t) - \varphi(t_0)) \]

a po odlogaritmování a úpravách

(52) \[\sigma(t) = \sigma(t_0) \cdot e^{-\left(\varphi(t) - \varphi(t_0)\right)}. \]

Napětí v betonu se tedy mění podle klesající exponenciální funkce (52). Podle stejné funkce dochází ke snižování vnesených impulsů v příkladě podle Obr. 4.1. Jak bylo už naznačeno v závěru předchozí kapitoly, ačkoliv je získané řešení omezené řadou zjednodušujících předpokladů, umožňuje odhadnout trend dlouhodobého chování konstrukce a určit přibližně redistribuci vnitřních sil a napětí.

Výše uvedené řešení však lze aplikovat i na jiné praktické úlohy. Na Obr. 4.2 je ukázka konstrukce, ve které jsou původně prosté nosníky uložené za sebou zmonolitěny, čímž se vytvoří spojitý nosník. V praxi by zřejmě sho o zmonolitění více než dvou polí a spojení sousedních nosníků by bylo tvořeno příčníky. I přes přijatá zjednodušení nám umožnila zvolená úloha vysvětlit princip řešení distribuce vnitřních sil vytvořené změnou nosných soustav.

Na Obr. 4.2 (a) je znázorněn průběh ohybových momentů ve fázi, kdy na prosté nosníky působí stálé zatížení g. V okamžiku zmonolitění t₀ dochází ke spojení obou prostých nosníků například jejich předepnutím (účinky předepnutí zde neřešíme), takže při přenosu dalších zatížení působí nosník již jako spojitý. Zmonolitěním se však nezměnilo působení stálého zatížení g, proto zůstává průběh momentů M₀ i po spojení stejný jako na prostých nosnících, viz Obr. 4.2 (b).

V důsledku dotvarování betonu však dochází v čase k redistribuci vnitřních sil a průběh celkových ohybových momentů M od zatížení g a od účinků dotvarování se postupně blíží průběhu momentů od zatížení g na spojitém nosníku, viz Obr. 4.2 (c). Toto tvrzení si dokážeme opět pomocí rovnice (52). Označme Mₙ,pod ohybový moment, který by nad podporou spojitého nosníku vyvolalo působení stálého zatížení g. Ve skutečnosti tento moment nad podporou spojitého nosníku těsně po spojení prostých nosníků nepůsobí, je nulový. Okamžik zmonolitění si lze tedy představit jako impuls, kterým na spojitém nosníku vynulujeme nadpodporový moment Mₙ,pod. Tento impuls se bude, obdobně jako v předchozím příkladě, zmenšovat podle rovnice (52). Podle této úvahy lze sestavit následující rovnici

(53) \[Mₚod(t) = Mₙ,pod - Mₙ,pod \cdot e^{-\left(\varphi(t) - \varphi(t₀)\right)}. \]

V čase spojení prostých nosníků je tedy celkový ohybový moment nad podporou spojitého nosníku Mₚod(t₀) vynulován vneseným impulsem. Ten klesá podle exponenciální funkce. Po úpravě (53) získáme rovnici

(54) \[Mₚod(t) = Mₙ,pod \cdot \left(1 - e^{-\left(\varphi(t) - \varphi(t₀)\right)}\right). \]
V čase t_∞ se hodnota exponenciální funkce blíží nulové hodnotě (závisí opět na kapacitě dotvarování (viz výše)) a nad podporou spojitého nosníku se tedy bu-de celkový ohybový moment od zatížení g a od účinků dotvarování bližit hod-notě $M_{g,pod}$.

Z předchozích příkladů je zřejmé, že **dotvarování betonu působí na konstrukci tak, aby se v čase t_∞ blížilo rozdělení vnitřních sil průběhu odpovídajícímu finálnímu statickému schématu konstrukce.** S výše nabytými znalostmi dokážeme tedy odhadnout, zda a jakým způsobem bude v konstrukci probíhat redistribuce vnitřních sil. Rozsah (míra) redistribuce pak závisí na čase a na kapacity dotvarování betonu. To lze využít k redukci či eliminaci účinků dotvarování vhodným návrhem montážního postupu.

Příkladem eliminace účinků dotvarování je konstrukce na Obr. 4.3. Jde o konstrukci o třech polích budovanou postupně jako dva prosté nosníky s převislým koncem. V čase t_0 se převislé konce nosníků spoji, čímž vznikne finální statické schéma konstrukce – spojité nosník o třech polích. Z předchozího je zřejmé, že účinkem dotvarování betonu se v případě jeho dostatečné kapacity změní rozdělení ohybových momentů z fáze prostých nosníku s převislými konci na Obr. 4.3 (a) na průběh odpovídající spojitému nosníku na Obr. 4.3 (c1). To je ovšem nepříjemné z hlediska dimenzování, protože při uvedení konstrukce do provozu krátce po zmonolitníní, kdy ještě neproběhne prakticky žádná redis-
tribuce od dotvarování, se budou účinky plného proměnného zatížení (určené na spojitém nosníku) přičítat k momentům na prostých nosnících a v čase t_0 k momentům na spojitém nosníku. Na tyto extrémní účinky musíme konstrukci nadimenzovat. Pokud však vyvodíme v nosníku průběh momentů jako na spo-jitém nosníku ještě před uvedením do provozu, pak dosáhneme významné úspory při dimenzování, protože nám postačí dimenzovat na průběh vnitřních sil na spojitém nosníku.

\[M_g(t_0) \]

(a) prosté nosníky s převislými konci

\[M_g(t_0) \]

(b) okamžik zmonolitnění t_0

\[M_g(t_\infty) \]

(c1) přerozdělení momentů v t_∞

\[\Delta M \]

\[M_g(t_0) + \Delta M \]

(c2) pokles podpěr po zmonolitnění t_0 nedochází k přerozdělení momentů t_∞

Obr. 4.3 Omezení redistribuce vnitřních sil
Toho je možné docílit speciálním montážním postupem. Pokud ihned po zmonolitnění provedeme pokles ohybových momentů ΔM podle Obr. 4.3 (c2). Při vhodně volbě velikosti poklesu získáme superpozici \(M_g(t_0) \) a ΔM průběh ohybových momentů totožný s průběchem \(M_g(t_0) \), který by vznikl na spojitém nosníku v čase \(t_0 \) dotvarováním betonu. K další redistribuci vnitřních sil účinkem dotvarování tedy nedochází, resp. oba impulsy působí z hlediska dotvarování proti sobě. Je-li tohoto průběhu vnitřních sil dosaženo ještě před uvedením konstrukce do provozu, zajistíme tak po celou dobu životnosti konstantní průběh vnitřních sil od stálych zatížení.

Jiným možným způsobem eliminace účinků dotvarování betonu na průběh ohybových momentů je možnost plného vyrování stálych zatížení předpětí. V takovém případě beton samozřejmě dotvaruje, ale konstrukce se účinkem dotvarování pouze zkracuje. Je třeba upozornit, že ve výše uvedených případech má zkrácení nosníku samozřejmě vliv na ztráty předpětí a tudíž na průběh ohybových momentů.

Ve výše uvedených úlohách sho vždy o aplikaci jednoho impulsu. Řešení konstrukce se složitějším postupem výstavby, případně s kombinací betonu různého stáří na místě, by bylo těžké analyzovat. Vysvětlíme proto pouze princip řešení, k čemuž nám poslouží příklad uvedený na Obr. 4.4.

Jde opět o postupnou výstavbu spojitého nosníku o dvou polích tvořené v první fázi výstavby dvěma prostými nosníky. Kromě zmonolitnění je uvažována změna podepření, dvě fáze předpínání a odlišné stáří obou nosníků.

V první fázi výstavby na Obr. 4.4 (a) působí vlastní tíha \(g_0 \) a předpětí první fáze \(p_1 \) na prosté nosníky s převislými konci. Na tyto účinky (příslušné vnitřní síly) je třeba konstrukci posoudit.

Předepnutím kabelů druhé fáze dojde ke zmonolitnění konstrukce vybetonováním příčníku a dále nosník působí jako spojité, viz na Obr. 4.4 (b). Účinky vlastní tíhy a předpětí první fáze se již na spojitém nosníku neprojeví (neuvážíme-li redistribuci od dotvarování, viz níže). Napětí vypočtená od účinků na prosté nosníky je však samozřejmě nutné superponovat s účinky projevujícími se na spojitém nosníku. V okamžiku předepnutí kabelů druhé fáze se zároveň předpokládá odstranění montážních podpor. Účinek jejich zrušení se projeví stejně, jako by byl nosník zatížen břemeny o velikosti opačných reakcí v místech dočasných podpor. Na spojitém nosníku vzniknou vnitřní síly, na které je opět třeba konstrukci posoudit.

Aplikaci ostatního stáloho zatížení \(g_1 \) v okamžiku ukončení montáže \(t_{g1} \), Obr. 4.4 (c), vzniknou na spojitém nosníku vnitřní síly od \(g_1 \). Ve fázi provozu konstrukce Obr. 4.4 (d) působí na konstrukci proměnné zatížení od času \(t_q \). Jeho účinky na spojitém nosníku označíme indexem \(q \). Případné poklesy podpor nebo zrušení montážního předpětí (tj. impulsy) by vyvolaly ohybové momenty \(M_i \).
Ve všech uvedených fázích výstavby i provozu je třeba provést řádné posouzení rozhodujících průřezů konstrukce s ohledem na redistribuci vnitřních sil od reologických účinků. Smršťování betonu vede ke snížení předpínací síly a tedy k redukci učinků předpětí, které lze určit zavedením deformačního zatížení odpovídajícího velikosti smršťování v daném čase. Výpočet je tedy triviální a nebude dále popisován. Obdobně jako u předchozích příkladů dojde k přerozdělení ohybových momentů směrem k vnitřní podpoře v důsledku dotvarování betonu. Celkový nadpodporový ohybový moment od dlouhodobých zatížení se tedy mění v důsledku dotvarování betonu v čase a nabývá hodnot $M(t_{g1})$, resp. $M(t_{\infty})$.

Hledáme-li řešení redistribuce ohybových momentů od dotvarování betonu v uzavřeném tvaru, je v tomto případě vhodné použít silovou metodu. Ta nám umožní převod obecně integrální rovnice na diferenciální rovnici obdobně jako tomu bylo při převodu (13) na (46), viz výše. Použití této metody je opět pod-
miněno speciálním tvarem koeficientu dotvarování $\varphi(t, \tau)$ podle teorii stárnutí (15).

Prvním krokem silové metody je rozdělení konstrukce na tzv. základní soustavy, které jsou staticky určité, a definice staticky zbytných veličin X_i. Předpokládejme, že základní soustavy volně dotvarují. V důsledku toho se zvětšují pouze jejich deformace, poněvadž jde podle první Collonnettiho věty o homogenní konstrukce.

Ve spojité konstrukci je však těmto deformacím bráněno, takže vznikají doplňkové síly od dotvarování (obdobně od smršťování). Přetvoření od dotvarování (a od smršťování) ve smyslu veličiny (v našem případě momentu) $X(t)$ je ihned anulováno opačným pružným přetvořením způsobeným změnou $dX(t)$. Pole jsou nestejně stará, proto v každém poli probíhá dotvarování (i deformace) jinak, což má vliv na rozdělení vnitřních sil.

Při výpočtu dlouhodobých průhybů proto při integraci přes objem konstrukce implikuje různé stáří betonu jednotlivých polí spojitého nosníku i využití tzv. afinitu dotvarování.

Afinita dotvarování je vlastnost křivek koeficientu dotvarování podle teorie stárnutí u různě starých betonů, viz Obr. 4.5. Platí, že poměr derivací koeficientu dotvarování podle času je konstantní

$$\frac{d\varphi(t_2)}{dt_2} = \kappa \frac{d\varphi(t_1)}{dt_1}, \tag{55}$$

dkde κ je součinitel afinitu dotvarování. Uvažujeme-li koeficient dotvarování podle Dischingera, viz kap. 3.6.2, pak platí

$\text{Obr. 4.5 Afinita dotvarování}$

V případě nosníku o dvou polích je vliv nestejného stáří betonu malý. Roste se stupněm statické neurčitosti, resp. s mírou omezení deformací základní soustavy, a se zvyšujícím se rozdílem stáří betonu.

3 V případě nosníku o dvou polích je vliv nestejného stáří betonu malý. Roste se stupněm statické neurčitosti, resp. s mírou omezení deformací základní soustavy, a se zvyšujícím se rozdílem stáří betonu.
Pokud platí
\[t_2 = t_1 - \Delta t, \]
pak je derivace koeficientu dotvarování v čase \(t_2 \) rovna
\[\frac{d\varphi(t_1 - \Delta t)}{dt_1} = B\varphi e^{-Bt_1} \cdot e^{-BM}, \]
odkud součinitel afinitu dotvarování
\[\kappa = e^{-BM}. \]

Z (59) je zřejmé, že \(\kappa \) je konstantní v celém oboru časové osy. Pokud uvažujeme jiný tvar koeficientu dotvarování podle teorie stárnutí, např. podle Mörsche, nezávisí \(\kappa \) pouze na rozdílu stáří betonu a je třeba jej uvažovat střední hodnotou od času \(t_0 \) až po \(t_e \). Obecně afinita dotvarování neplatí, ačkoliv jsou si křivky koeficientu dotvarování podobné.

S ohledem na rozdílné stáří betonů je tedy třeba pro výpočet dotvarování použít pro každé pole nosníku jinou funkci pro koeficient dotvarování \(\varphi_j \). Při výpočtu dlouhodobých průhybů integraci přes objem konstrukce je však třeba zavést společný koeficient dotvarování \(\varphi \) referenčního betonu. Využijeme afinitu dotvarování, která bývá vzata na její derivaci
\[\varphi_j = \kappa_j \varphi. \]

Pomocí (60) zavedeme náhradní modul pružnosti \(E_{cj} = \frac{E_c}{\kappa_j} \) a potom platí
\[\frac{\varphi_j}{E_c} = \frac{\kappa_j \varphi}{E_{cj}} = \frac{\varphi}{E_{cj}}. \]

Výpočet průhybů tedy zjednodušíme zavedením tzv. transformované konstrukce, pro jejíž jednotlivé prvky (v našem případě pole nosníku) budeme uvažovat náhradní modul pružnosti \(E_{cj} \).

Z výše uvedené úvahy o vyrovnání přetvoření od dotvarování opačným pružným přetvořením způsobeným změnou staticky zbytných veličin \(dX(t) \) lze se- stavit soustavu lineárních diferenciálních nehomogenních rovnic prvního řádu s konstantními koeficienty, viz Zůda [24]. Počet rovnic se rovná počtu staticky zbytných veličin. V našem případě získáme jednu rovnici pro celkový nadpodporový ohybový moment od dlouhodobých zatížení \(M(t) \). Je třeba určit, které složky dlouhodobých zatížení se při výpočtu tohoto momentu uplatňují. To závisí na skutečnosti, zda je konstrukce homogenní z hlediska dotvarování.
V případě homogenní konstrukce\(^4\) (stejně stará pole spojitého nosníku) se podle Collonnettiho vět projeví vliv dotvarování betonu pouze na vnitřní síly od dlouhodobých zatížení první fáze a od zatěžovacích impulsů (případné poklesy podpor nebo zrušení montážního předpětí). To znamená, že zatížení vlastní tihou prostých nosníků, kabely první fáze a impulsy zahrneme do výpočtu celkového nadpodporového ohybového momentu \(M(t)\). Ostatní dlouhodobá zatížení aplikovaná ve druhé a třetí fázi výstavby způsobují v čase constantní vnitřní síly na spojitém nosníku. **V případě nehomogenní konstrukce se v obecném případě vliv dotvarování projeví na redistribuci vnitřních sil od všech dlouhodobých zatížení, tedy od zatížení vlastní tihou prostých nosníků, kabely první a druhé fáze, impulsy, zatížení od zrušení montážních podpor a od ostatního stálého zatížení.**

4.3 Metoda časové diskretizace

Pro řešení integrální rovnice (13) lze použít rovněž některou z [numerických metod](#). Z hlediska fyzikálního jde vlastně o výpočet přetvoření betonu, při němž aplikujeme princip superpozice. Předpokládejme například, že se napětí měni pouze skokem v dískřtních časových okamžicích (časových uzlech). Celkové poměrné přetvoření betonu od napětí lze pak vypočíhat podle vzorce (11). Jak bude dále podrobněji vysvětleno, z hlediska matematického jde v tomto případě o použití [složeného obdélníkového pravidla](#) pro řešení integračního případu (13).

Použití numerických metod má řadu výhod. Především je možné prakticky bez zvýšení obtížnosti řešení zohlednit v jednom výpočtu kromě dotvarování betonu i jeho smršťování a starnutí včetně jejich vzájemné interakce. Řešení není omezeno předpoklady o tvaru funkce dotvarování, a proto je lze použít i na jiné teorie než na teorii starnutí. Jak vyplývá ze vzorce (11), respektuji numerické metody pro výpočet dotvarování celou historii zatížení betonu. V případě prvků upnutých ve konstrukci však závislost přírůstků pružného přetvoření (a tedy i napětí) na velikosti dosavadního přetvoření od reologických změn vyvolává nutnost opakovaného statického řešení konstrukce v každém časovém uzlu. Princip metody bude vysvětlen na velmi jednoduchém příkladě.

Na Obr. 4.6 je naznačeno řešení spřaženého ocelo-betonového sloupu zařízeného centricky silou \(F\). Jednotlivé části sloupu (ocelová a betonová) jsou symbolicky nakresleny vedle sebe z důvodu názornějšího zobrazení jejich deformací. Ve skutečnosti však předpokládáme, že jde o oboustranně symetrický průřez, takže těžiště obou jeho částí se nachází v jednom bodě. Axiální tuhost jednotlivých částí průřezu v čase \(t\) označme \(A_cE_c\) pro ocel, \(A_bE_b(t)\) pro beton a symbolicky \(\sum AE\) pro celý průřez. Dále považujeme okamžitou nepružnou složku

\(^4\) Správnější bychom měli hovořit o výpočtovém modelu konstrukce, neboť stejnou konstrukci můžeme modelovat např. včetně předpinací výztuže, čímž získáme nehomogenní výpočtový model. Správnější bychom měli hovořit vždy o výpočtových modelech konstrukcích, nikoliv o konstrukcích, což bohužel není v praxi ani v odborné literatuře dodržováno.
přetvoření obou materiálů za nulovou. Do času t_0 zatížení sloupu silou F před-
pokládejme dokonalé ošetřování betonu, při kterém nedojde k jeho vysychání,
a tedy ani ke smršťování.

Varianta deformačního zatížení

\[(62) \quad \Delta \varepsilon^s_c(t_0) = \Delta \varepsilon^s_c(t_0) = \frac{F}{\Sigma AE}.\]

Obr. 4.6 Metoda časové diskretizace (TDA)

Účinky zatížení silou F určíme obecně provedením statické analýzy konstruk-
ce, při které určíme tuhosti jednotlivých prvků v závislosti na hodnotě modulu
pružnosti betonu $E_c(t_0)$. V našem jednoduchém případě lze přírůstek okamžité-
ho pružného poměrného přetvoření betonu i oceli určit jako

\[
\Delta \varepsilon^c = \Delta \varepsilon^c = \frac{F}{\Sigma AE}.
\]

Následně je možné určit přírůstek vnitřních sil v obou materiálech. Celkové
vnitřní síly se v čase t_0 rovnají tomuto prvnímu přírůstku vnitřních sil.

Předpokládejme nyní, že až do časového uzlu t_1 se všechny prvky konstrukce
volně deformují. Dochází tedy k volnému dotvarování a smršťování betono-
vých částí. V čase těsně před t_1 by se betonový prvek zkrátil v důsledku smrš-

Varianta silového zatížení

\[
N^1 = \Delta N^1_c + \Delta N^2_c = N^1 + \Delta N^2_c = \sum \Delta \varepsilon^c.
\]

Obr. 4.6 Metoda časové diskretizace (TDA)
řívání a dotvarování o \(\Delta e_{c,s}^{\varepsilon,s}(t_1,t_0) \), viz Obr. 4.6. Přírůstek přetvoření od dotvarování betonu je

(63) \[\Delta e_{c}^{\varepsilon}(t_1,t_0) = e_{c}^{\varepsilon}(t_1), \]

kde přetvoření od dotvarování \(e_{c}^{\varepsilon}(t) \) se vypočte podle (7) a přírůstek přetvoření od smršťování dle příslušné normy pro interval \(<t_0,t_1> \).

Ve skutečnosti je však volné deformaci bráněno upnutím betonového prvku v konstrukci, v našem případě k ocelově části sloupu. Přírůstek poměrného přetvoření \(\Delta e_{c,s}^{\varepsilon,s}(t_1,t_0) \) proto necháme v čase \(t_1 \) působit na konstrukci jako deformací zatížení. Obtížnost řešení účinků deformačních a silových zatížení je při současném úrovni rozvinutí a rozšíření metody konečných prvků stejná a není potřeba zvažovat možnost převedení deformacních impulsů na silové. Statickou analýzou konstrukce na účinky těchto deformacních zatížení určíme celkový přírůstek poměrného přetvoření ocelové a betonové části. Z důvodu kompatibility přetvoření obou částí platí, že celkové přírůstky poměrných přetvoření obou částí jsou si rovny

(64) \[\Delta e_{c} = \Delta e_{s}. \]

Podle rovnice (1) je přírůstek celkového poměrného přetvoření roven součtu přírůstku přetvoření pružného a přírůstku přetvoření od dotvarování a smršťování (ostatní složky přetvoření jsou podle výše uvedených předpokladů nulové). Proto obecně platí

(65) \[\Delta e_{c} = \Delta e_{c}^{\varepsilon,s} + \Delta e_{c}^{\varepsilon}, \quad \Delta e_{s} = \Delta e_{s}^{\varepsilon} \]

a v našem příkladě po úpravách

(66) \[\Delta e_{c}^{\varepsilon}(t_1) = \Delta e_{c}^{\varepsilon,s}(t_1,t_0) \quad \Delta e_{s}^{\varepsilon}(t_1) = \Delta e_{s}. \]

Z Hookeova zákona zjistíme přírůstek napětí v betonu \(\Delta \sigma_{c}(t_1) \).

Výpočet v dalším časovém intervalu \(<t_1,t_2> \) se liší od předchozího pouze tím, že přetvoření od dotvarování betonu \(e_{c}^{\varepsilon}(t_2) \) určíme pomocí modifikovaného vztahu (11). Přírůstek přetvoření od dotvarování betonu lze nalézt jako rozdíl

(67) \[\Delta e_{c}^{\varepsilon}(t_2,t_1) = \Delta e_{c}^{\varepsilon}(t_2) - \Delta e_{c}^{\varepsilon}(t_1). \]

Další kroky výpočtu jsou shodné s postupem v předchozí časovém intervalu. Obdobně pak v následujících intervalech.

Při postupném výpočtu v \(n \) časových intervalech získáme přírůstky napětí v betonu \(\Delta \sigma_{c}(t_i) \) a oceli \(\Delta \sigma_{s}(t_i) \), \(i=1, ..., n \). Jejich součtem lze určit celková napětí ve kterémkoliv časovém okamžiku \(t_1,t_2, \) až \(t_n \), viz graf na Obr. 4.6.

Popsaná numerická metoda časové diskretizace (Time Discretization Analysis, TDA) je obecná a podobně jako jsme ji použili pro výpočet redistribuce normálových sil prostřednictvím poměrných přetvoření, je možné ji použít zároveň pro výpočet ohýbaných prvků prostřednictvím křivostí, resp. zkosení, viz kap. 4.5. Dále je třeba zdůraznit, že není jedinou možnou variantou řešení integrálu (13). Jednoduchou úpravou lze získat řešení odpovídající složenému modifiko-
vanému obdélníkovému pravidlu, poněkud náročnější a přesnější řešení vyžadující provádění iterací v každém časovém uzlu je pak řešení pomocí složeného lichoběžníkového pravidla. Pro omezený rozsah skripta nelze tato řešení podrobně rozvést.

Velikost chyby metody časové diskretizace odpovídá velikosti chyby příslušné numerické integrace. U výše popsané metody tedy reprezentuje chybu plocha vyznámená v grafu na Obr. 4.6. Chybu lze snížit zvětšením počtu časových uzlů. Je zřejmé, že přírůstky napětí na obrázku se v po sobě jdoucích intervalech snížují. To vyplývá ze skutečnosti, že průběh dotvarování betonu v čase je exponenciální. Při daném počtu časových uzlů lze chybu snížit použitím logaritmického dělení časové osy.

Poslední doplňující poznámka se týká srovnání obou variant metody uvedených v Obr. 4.6. Cílem poznámky je vysvětlit totožnost obou řešení, která jsou v obrázku nazvaná „varianta deformačního zatížení“ a „varianta silového zatížení“. Druhá z obou jmenovaných bývá v odborné literatuře nazyvána rela-

záční metoda, viz Šmerda, Křístek [23]. Ve variantě silového zatížení se před- pokládá, že v průběhu jednotlivých časových intervalů jsou všechny prvky konstrukce tuze upnuty. Dotvarováním a smršťováním proto v betonových prvcích vznikají tahové normálové síly. Tyto síly ve skutečnosti v prvcích ne-vznikají, proto je třeba konstrukci v následujícím časovém uzlu zatížit jejich výslednicí s opačným znaménkem. Přírůstek pružného poměrného přetvoření v daném časovém uzlu se proto získá superpozicí obou těchto účinků.

4.4 Zjednodušené metody řešení reologických účinků na konstrukce

Přesné řešení příkladu z minulé kapitoly je vyneseno plnou tučnou čarou. Na-pětí v betonu spojité klesá od počáteční hodnoty \(\Delta \sigma_c(t_0) \) vnesené vnější silou \(F \). Opět připomíme, že velikost smršťování nezávisí na historii zatížení, proto je jeho výpočet pouze triviální aplikací příslušného normového vzorce. Soustředíme se tedy na výpočet přetvoření od dotvarování v čase \(t_n \). Jednoduchou úpravou vzorce (13) získáme

\[
\varepsilon^c(t_n) = \frac{\Delta \sigma_c(t_0)}{E_c(t_0)} \sigma(t, t_0) + \int_{t_0}^{t_n} \frac{d \sigma_c(\tau)}{E_c(\tau)} \frac{\sigma(\tau, t_0)}{E_c(\tau)} d\tau.
\]
Řešení metodou časové diskretizace je zobrazeno čárkovanou čarou označenou TDA. Předpoklady TDA odpovídají rovnici (11), jejíž úpravou lze nalézt vzorec pro výpočet přetvoření od dotvarování v čase \(t_n \)

\[
\varepsilon_c^e(t_n) = \sum_{i=0}^{n} \frac{\Delta \sigma_c(t_i)}{E_c(t_i)} \varphi(t_n, t_i).
\]

Řešení získané pomocí TDA se od přesného řešení liší. Jak bylo řečeno v závěru minulé kapitoly velikost chyby závisí na počtu časových uzlů a na způsobu dělení časové osy.

Předpokládejme nyní pouze jeden přírůstek napětí \(\Delta \sigma_c(t_0) \). Znamená to, že po vnesení napětí vnější silou \(F \) předpokládáme konstantní napětí v betonu v čase. Velikost přetvoření od dotvarování v čase \(t_n \) je potom

\[
\varepsilon_c^e(t_n) = \frac{\Delta \sigma_c(t_0)}{E_c(t_0)} \varphi(t_n, t_0).
\]

Řešení je na Obr. 4.7 zobrazeno čerchovanou čarou označenou EM. Jde totiž o tzv. postup efektivního modulu, dříve velmi rozšířenou v praxi. Použijeme-li tento postup při výpočtu účinku vnějšího zatížení, získáme přímo dlouhodobé deformace. K určení efektivního modulu \(E_c^{ef} \) poslouží, vyjadříme-li celkové přetvoření mechanické \(\varepsilon_c^m(t) \) z rovnice (11) pouze pro jeden přírůstek napětí \(\Delta \sigma_c(t_0) \)

\[
\varepsilon_c^m(t_n) = \frac{\Delta \sigma_c(t_0)}{E_c(t_0)} \left[1 + \varphi(t_n, t_0) \right] = \frac{\Delta \sigma_c(t_0)}{E_c(t_n)} \left[1 + \varphi(t_n, t_0) \right] = \frac{\Delta \sigma_c(t_0)}{E_c^{ef}}.
\]

Z obrázku je zřejmé, jak velké chyby se dopouštíme použitím této metody v případě monotónně klesajícího (obecně měnícího se) napětí. Ve snaze zmenšit tuto chybu byl zaveden tzv. efektivní modul závislý na čase \(E_c^{efa} \)

\[
E_c^{efa} = \varepsilon_c(t_0) \left[1 + \chi \varphi(t_n, t_0) \right],
\]
kde χ je tzv. Trost-Bažantův koeficient ($\chi < 1$), kterým se zvyšuje efektivní modul. Navenek se to projeví snížením chyby výpočtu, což se dá v obrázku znázornit dvojitě čerchovanou čarou označenou ETM (effective time modulus). Metodu lze použít u příkladů, u kterých dopředu známe či odhadneme historii napětí.

Snížení chyby metody ETM dosahujeme zmenšováním objektivně určené funkce pro koeficient dotvářování Trost-Bažantovým koeficientem. Opticky korektnější vylepšení metody je rozdělení řešeného intervalu $t_{0_0} < t_n$ na stále přijatelné dva sub-intervaly, přičemž vnitřní časový uzel t_{ef} zvolíme tak, aby došlo k vynulování chyby řešení (plochy vyzačené na Obr. 4.7 jsou stejné, opačného znamění). Jde o tzv. metodu efektivního času v obrázku označenou čárkovanou čarou ET. Pro nalezení efektivního času lze použít např. přibližně řešení v uzavřeném tvaru pomocí teorie stárnutí, což opět komplikuje řešení a omezuje třídou řešitelných úloh.

4.5 Časová analýza předpjatých betonových konstrukcí

Posuzováno z hlediska širších souvislostí sestává časová analýza konstrukce ze tří úzce spolu souvisejících částí:
- modelování změn konfigurace konstrukce, tj. postupný vznik či zánik částí konstrukce, okrajových podmínek a zatížení, které spočívá v postupné modifikaci konstrukce (její matice tuhosti) a záznamu historie vnitřních sil a deformací,
- analýza reologických účinků na konstrukci,
- vlastní statická analýza konstrukce.

4.5.1 Statická analýza konstrukce, statický model

Z praktických důvodů je třeba dbát, aby zvolený výpočtový model byl co nej-jednodušší, avšak dostatečně výstižný a obecný. Musí umožnit zjednodušení analýzy jednotlivých montážních kroků, výpočet přerozdělení vnitřních sil od dotvarování smršťování betonu a dále posouzení bezpečnosti a provozuschopnosti konstrukce. Důležitá je schopnost modelovat konstrukce správně správněho průřezu s ohledem na cenickou polohu jednotlivých jeho částí.

Nejednodušší ideologizací betonových prvků je prut. Vzhledem k symetričnosti dlouhodobých zatížení a geometrickému tvaru většiny mostů konstrukcí se pak jeví nejednodušším postačujícím modelem rovinný rám. Protože přičný řez postupně vytvářených nosných prvků konstrukce je obvykle vytvořen z různých materiálů, například z betonového nosníku, spřažené desky, předpínačích kabelů a betonařské výztuže, je vhodné modelovat tyto rozdílné materiály individuálními prototypy prvků, jejichž těžišní osa je excentrická vzhledem k referenční ose. Výsledné vnitřní síly v jednotlivých excentrických prvcích lze...
pak superponovat například k vnitřním silám ve stěnách či deskách deskostěnového modelu.

Z důvodu obecnosti řešení je vhodné pro statickou analýzu použít metodou konečných prvků (MKP). Tato metoda umožňuje rovněž velkou variabilitu při modelování změn konfigurace konstrukce. Model konstrukce lze tedy sestavit z excentrických prutových konečných prvků, které např. u komorového průřezu mohou modelovat stěny, horní a dolní desku, předpínací kabely a betonářskou výztuž, viz Obr. 4.8.

Existují dvě možné varianty spojitosti či nespojitosti přetvoření na stycích excentrických prvků. Kompatibilita přetvoření prvku s excentrickým připojením by měla být průběžná, tzn. jsou-li mezi dvěma uzly dva prvky, mely by na stiku mezi sebou mít spojitý průběh přetvoření. Pro modelování je samozřejmě možné použít běžný konečný prvek se dvěma uzly, třemi stupni volnosti v každého uzlu a s lineární interpolační funkcí pro osové přemístění. Potom ale není splněn výše uvedený požadavek spojitosti přetvoření.

Vzhledem k výše uvedenému lze doporučit použití prutového přímého prvku se dvěma vnitřními a jedním vnějším uzlem. Osové a příčné přemístění $u(x)$ a $w(x)$ a smykové zkosení $\gamma(x)$ lze vyjádřit pomocí osmi lokálních parametrů deformace. Jejich počet (šest vnitřní a dva vnitřní parametry deformace) je dán použitými interpolačními funkcemi. Pro osové a příčné přemístění jsou zvoleny polynomy druhého a třetího stupně. Statickou kondenzaci parametrů vnitřních uzlů, lze pak zajistit plnou kompatibilitu přetvoření na stých excentrických prvků. Podrobný popis konečného prvku je nad rámec tohoto textu a lze jej nalézt např. v [14].
4.5.2 Modelování změn konfigurace konstrukce

V případě dodatečně předpjatých kabelů je třeba při jejich napínání zahrnovat do globálních rovnic rovnováhy pouze zatížení ekvivalentní jejich přetvoření, viz kap. 4.3.1 [25]. Jejich tuhost lze zahrnovat do tuhosti konstrukce teprve po zakotvení kabelů. Změny předpětí kabelů modelovaných konečnými prvky způsobené zatížením konstrukce, dotvarováním a smršťováním není třeba zvlášť řešit, neboť jejich výpočet je za výše uvedených předpokladů obsažen v metodě samotné, viz kap. 4.3.2 a 4.3.3 [25].

4.5.3 Analýza reologických účinků na konstrukci

Pro výpočet reologických účinků postačuje pro praktické úlohy použít teorii viskoelasticity, tj. výpočet s využitím zjednodušení definovaných v kap. 3.2 až 3.5. Zopakuji krátce, že smršťení a dotvarování betonového prvku se vyjadřuje v závislosti na vlastnostech jeho příčného řezu jako celku, přičemž se zohledňuje velikost prvku a relativní vlhkost okolního prostředí. Dále se uvažuje, že

- závislost mezi napětím a přetvořením od dotvarování je lineární,
- platí princip superpozice pro přetvoření způsobená napětím zavedeným v různých časových okamžicích,
- vlivem stárnutí betonu dochází ke změně jeho modulu pružnosti v čase.

Pro výpočet účinků dotvarování je tedy možné využít vztah (11), který lze rozšířit z jednoosých poměrných přetvoření i na křivost i zkosení (zobecněná elastická přetvoření).

Za těchto předpokladů lze pro analýzu reologických účinků použít nejobecnější z výše uvedených metod, a to metodu časové diskretizace. Zopakuji, že metoda je založena na postupném výpočtu v diskretních časech - časových uzlech, kterými je řešený časový úsek rozdělen. Napětí se předpokládá konstantní v celém intervalu mezi jednotlivými časovými uzly, v časových uzlech se mění skokem. V časových uzlech jsou tedy zadávány změny zatížení, předpětí, jsou přidávány, nebo naopak odebírány pruty či vnější vazby.

K výhodám výše popsané metody patří jednoduchost, obecnost a při dostatečném počtu dílčích časových intervalů i přesnost. Metoda neomezuje žádným způsobem tvar funkce dotvarování, ani způsob a historii zatěžování. Nevyho-
dou metody je její značná náročnost na paměť a strojový čas počítače. Pro snížení nároků na kapacitu paměti počítače lze místo sumace (11) použít úpravy, kdy koeficient dotvarování nahradíme tzv. Dirichletovou řadou. V současné době však vzhledem ke kapacitám počítačů není tato úprava při řešení rámových konstrukcí nutná a její popis je nad rámcem tohoto učebního textu.

4.5.4 Postup výpočtu

Výpočet konstrukce tedy probíhá v časových uzlech o celkovém počtu n. V časovém uzlu tj (j = 0,1,2,...,n) známe celková uzlová přemístění konstrukce Δg, historii zobecněných elastických přetvoření a celkové vnitřní síly ve všech prvcích konstrukce. Celý postup v j-tém časovém uzlu lze shrnout do následujících kroků:

1. Vypočtou se přírůstky poměrných přetvoření, křivostí a smykových zkořenění ve všech prvcích konstrukce od dotvarování v intervalu <tj⁻¹, tj>. Výpočet se provede podle vzťahu (11), v němž uvažujeme pouze druhý sčítací. Zároveň jsou vypočteny také účinky smrštění.
2. Sestaví se zatěžovací vektor na konstrukci dFp, který je staticky ekvivalentní účinkům od přírůstku zobecněných poměrných přetvoření určených v kroku 1.
3. Jsou vypočítány matice tuhosti jednotlivých prvků K v čase tj a je sestavena matice tuhosti Kg celé konstrukce.
4. Je analyzován systém rovnic KgΔg = dFp. Vektor přírůstků uzlových přemístění dΔg se přidá k vektoru celkových uzlových přemístění Δg.
5. Přírůstky vnitřních sil a přírůstky pružných poměrných přetvoření na prvek jsou vypočítány z přírůstků uzlových přemístění.
6. Jsou zavedeny změny v konfiguraci konstrukce, předčásti a zatížení provedené v časovém uzlu tj.
7. Jsou určeny přírůstky poměrných přetvoření prvků modelujících kabely zatížených předčástím v časovém uzlu tj.
8. Sestaví se zatěžovací vektor dFz jako ekvivalent účinků poměrných přetvoření určených v kroku 7. Přírůstky jiných typů dlouhodobých zatížení zavedených v časovém uzlu tj jsou přičteny k zatěžovacímu vektoru dFz.
9. Je analyzován systém rovnic KgΔg = dFz. Vektor přírůstků uzlových přemístění dΔg se přidá k vektoru celkových uzlových přemístění Δg.
10. Přírůstky vnitřních sil a přírůstky pružných poměrných přetvoření na prvku jsou vypočítány z přírůstků uzlových přemístění.
11. Přírůstky vnitřních sil určené v krocích 5 a 10 jsou přičteny k celkovým vnitřním silám. Přírůstky pružných poměrných přetvoření určené v krocích 5 a 10 jsou sečteny a uloženy k historii elastických okamžitých přetvoření jako přírůstek v časovém uzlu tj.
12. Návrat ke kroku č. 1 a provedení výpočtu pro časový uzel j+1.
Uvážíme-li tedy předpoklady řešení časové analýzy konstrukce uvedené v této kapitole, lze konstatovat, že za předpokladu platenosti teorie viskoelasticity je úloha řešena metodou časové diskretizace v kombinaci s metodou konečných prvků. Výše popsaná metoda byla použita v programovém modulu TDA systému NEXIS 32, resp. SCIA.ESA PT.

4.6 Příklad výpočtu metodou časové diskretizace, kontrolní otázky

V této kapitole naleznete praktický výpočet dotvarování betonu metodou časové diskretizace, úkoly k procvičení teorie a kontrolní otázky.

Doba potřebná k procvičení látky by neměla být delší než 6 hodin.

Úkol 4.1

Proveďte integraci per-partes integrální rovnice (13).

Úkol 4.2

Ověřte, zda je derivace koeficientu dotvarování podle Dischinger, Mörsche a ČSN 73 1201 (vzorce (15) až (17)) konstantní. Platí tzv. afinita dotvarování?

Řešení

Výsledek řešení úkolu 4.1 je uveden v tomto textu na straně 33, rovnice (41).

Výsledek řešení úkolu 4.2 je uveden v tomto textu na straně 39 až 40.

Příklad 4.1

Určete přerozdělení vnitřních sil spřaženého ocelo-betonového sloupu zatíženého centricky tlakovou silou F=8000 kN. Předpokládáme oboustranně symetrický průřez obou částí sloupu. V čase \(t_0 = 0 \) dní bude vybetonována betonová část sloupu a bude ošetřována v prostředí se 100% vlhkostí do času \(t_1 = 3 \) dny, kdy se vlhkost okolního prostředí změní na 60%. Ve stáří betonu \(t_2 = 14 \) dnů bude sloup zatížen silou \(F \). Určete normálovou sílu působící v obou částech sloupu v časech \(t_3 = 28 \) dnů, \(t_4 = 90 \) dnů, \(t_5 = 365 \) dnů.

Uvažujte beton třídy C60/75 s mikroplnivem z křemičitého úletu, cement třídy R, modul pružnosti oceli \(E_s = 200 \ 000 \) MPa, průřezovou plochu betonu \(A_c = 0,25 \) m\(^2\), průřezovou plochu oceli \(A_s = 0,02 \) m\(^2\).

Použijte materiálové charakteristiky a model dotvarování, smršťování a stárnutí betonu podle normy EN 1992-2 [13].

- 50 (64) -
Řešení

Tento příklad je z pedagogických důvodů volen jednodušší, než by tomu bylo v praxi. Očekává se, že pochopením použité metody řešení na jednoduchém příkladě se čitatelı pospoxají souvislosti se statickým řešením obecné namáhané konstrukce a bude pak schopen použít metodu obecné.

Přerozdělení vnitřních sil (v našem případě normálové síly) závisí na tuhostech jednotlivých částí průřezu, na poměrném přetvoření od dotvarování i smršťování betonu. Proto musíme všechny tyto veličiny vyčlínit ve všech časových okamžicích potřebných pro analýzu dotvarování betonu a statickou analýzu.

V tomto příkladě je zvolen beton třídy C60/75, jehož materiálové charakteristiky jsou uvedeny již v příkladě v kap. 3.7, takže je zde nebudeme opakovat. Rovněž vzorce popisující dotvarování, smršťování a stárnutí betonu uvedené v kap. 3.7 zde nebudeme opisovat. V Tab. 4-1 jsou uvedeny vstupní údaje úlohy (vždy červenou barvou) a některé další parametry, které nezávisí na stáří betonu. Vzorce pro jejich výpočet byly uvedeny výše v textu této studijní opory.

F [kN]	8000
A_s [m^2]	0,02
E_s [GPa]	200
A_c [m^2]	0,25
obvod průřezu vystavený vzduchu u [m]	2
vysychající obvod h_0	250 mm
f_cm [MPa]	60
f_cm [MPa]	68
cement třídy	R
E_cm (ve 28 dnech) [GPa]	39,0998737
s	0,2
křemičitý úlet	ANO
stáří betonu při začátku smršťování t_s	3
K(f_cm)	17,4
β_cm	0,007
tuhost průřezu - ocel [MN]	4000

Tab. 4-1 Vstupní data úlohy

Dalšími vstupními údaji naší úlohy jsou řešené časy t_0 až t_5 (tzv. časové uzly) uvedené v řádku 1 Tab. 4-2. I v této tabulce jsou vstupní data úlohy značena vždy červenou barvou.

Pevnosti a moduly pružnosti betonu v závislosti na jeho stáří vyčíslime v Tab. 4-2, řádky 2 až 6. V řádku 7 si připravíme hodnotu 0,45 f_cm(t) pro
vybrané statě z betonových konstrukcí I, Modul M01

pozdější kontrolu, zda tlakové napětí v betonu tuto hodnotu nepřestoupí. V tom případě by se mělo uvažovat nelineární dotvarování, viz článek 3.1.4 (4) [12]. V řádcích 9 až 11 můžeme bez ohledu na napětí v betonu připravit pro námě řešené časy t_0 až t_5 hodnoty celkového poměrného přetvoření $\Delta \varepsilon (t)$ od autogenního smršťování, od smršťování vysycháním a celkové hodnoty poměrného přetvoření od smršťování. Na řádku 12 potom vypočteme přírůstky poměrného přetvoření od smršťování v sub-intervalech $<t_{i-1}, t_i>$ pro $i=1$ až 5.

Axiální tuhost jednotlivých částí průřezu v čase t označme $A_s E_s$ pro ocel, $A_c E_c(t)$ pro beton a symbolicky $\Sigma A E$ pro celý průřez. Hodnota $A_s E_s$ se v čase nemění, hodnoty závislé na stáří betonu $A_c E_c(t)$ a $\Sigma A E$ vypočteme v Tab. 4-2, řádky 13 a 14. Přírůstek okamžitého pružného poměrného přetvoření betonu $\Delta \varepsilon (t)$ od vnější centricky působící tlakové síly F se vypočte jako

$$\Delta \varepsilon (t) = \frac{F}{\Sigma A E},$$

je roven přírůstku okamžitého pružného poměrného přetvoření oceli a je uveden v řádku 15 citované tabulky. Vynášením modulem pružnosti v dáném stáří získáme přírůstek tlakového napětí v betonu $\Delta \sigma (t)$ (řádek 16) a v oceli $\Delta \sigma (t)$ (řádek 17) a proveďeme předběžnou kontrolu dosaženého tlakového napětí v betonu $\Delta \sigma (t)<0.45 f_{ck}(t)$. V betonu je však v tomto čase již tahové napětí od smršťování, kterému je bráněno ocelovou částí průřezu.

Pro výpočet použijeme metodu časové diskretizace podle kap. 4.3, variantu silového zatížení. Metoda řešení je v kap. 4.3 teoreticky vysvětlena na téměř identickém příkladě, viz Obr. 4.6.

V prvním kroku předpokládáme, že až do časového uzlu t_1 budou betonová i ocelová část tuze upnuty. Kdyby se betonová část sloupu mohla volně deformovat, zkrátit by se sloup (ačkoli je beton ošetřován) v důsledku autogenního smršťování. Velikost přírůstku od smršťování je v Tab. 4-2 na řádku 12, sloupci 3. Vzhledem k tomu, že až do časového uzlu t_1 nepůsobí na beton žádné napětí, lze psát

$$\Delta \varepsilon (t_1, t_0) = \Delta \varepsilon (t_1, t_0) = -5,8121 \times 10^{-5}.$$

V důsledku tuhého upnutí by od tohoto přetvoření vznikla tahová síla

$$\Delta N_c (t_1, t_0) = -\Delta \varepsilon (t_1, t_0) A_c E_c(t_1) = 0,52734 \text{ kN},$$

která by v betonu způsobila tahové přetvoření

$$\Delta \varepsilon (t_1) = \frac{\Delta N_c (t_1)}{A_c E_c(t_1)} = 5,8121 \times 10^{-5}.$$

Vzhledem k tomu, že neuvážujeme dále relaxaci ocelové části sloupu, bude v dalším textu předpokládáno

$$\Delta \varepsilon (t, t_{i-1}) = \Delta N_c (t) = 0.$$

$$\Delta \varepsilon (t) = \frac{F}{\Sigma A E},$$

je roven přírůstku okamžitého pružného poměrného přetvoření oceli a je uveden v řádku 15 citované tabulky. Vynášením modulem pružnosti v dánem stáří získáme přírůstek tlakového napětí v betonu $\Delta \sigma (t)$ (řádek 16) a v oceli $\Delta \sigma (t)$ (řádek 17) a proveďeme předběžnou kontrolu dosaženého tlakového napětí v betonu $\Delta \sigma (t)<0.45 f_{ck}(t)$. V betonu je však v tomto čase již tahové napětí od smršťování, kterému je bráněno ocelovou částí průřezu.

Pro výpočet použijeme metodu časové diskretizace podle kap. 4.3, variantu silového zatížení. Metoda řešení je v kap. 4.3 teoreticky vysvětlena na téměř identickém příkladě, viz Obr. 4.6.

V prvním kroku předpokládáme, že až do časového uzlu t_1 budou betonová i ocelová část tuze upnuty. Kdyby se betonová část sloupu mohla volně deformovat, zkrátit by se sloup (ačkoli je beton ošetřován) v důsledku autogenního smršťování. Velikost přírůstku od smršťování je v Tab. 4-2 na řádku 12, sloupci 3. Vzhledem k tomu, že až do časového uzlu t_1 nepůsobí na beton žádné napětí, lze psát

$$\Delta \varepsilon (t_1, t_0) = \Delta \varepsilon (t_1, t_0) = -5,8121 \times 10^{-5}.$$

V důsledku tuhého upnutí by od tohoto přetvoření vznikla tahová síla

$$\Delta N_c (t_1, t_0) = -\Delta \varepsilon (t_1, t_0) A_c E_c(t_1) = 0,52734 \text{ kN},$$

která by v betonu způsobila tahové přetvoření

$$\Delta \varepsilon (t_1) = \frac{\Delta N_c (t_1)}{A_c E_c(t_1)} = 5,8121 \times 10^{-5}.$$

Vzhledem k tomu, že neuvážujeme dále relaxaci ocelové části sloupu, bude v dalším textu předpokládáno

$$\Delta \varepsilon (t, t_{i-1}) = \Delta N_c (t) = 0.$$

5 Podle EN 1992-2 se autogenní smršťování projevuje i po dobu ošetřování betonu. Přestože vlastní experimenty autora tuto hypotézu nepotvrdily, respektuujeme v tomto textu ustanovení citované normy.
<table>
<thead>
<tr>
<th>sloupec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>řádek</td>
<td>t₀</td>
<td>t₁</td>
<td>t₂</td>
<td>t₃</td>
<td>t₄</td>
<td>t₅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>stáří betonu [dny]</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>28</td>
<td>90</td>
<td>365</td>
</tr>
<tr>
<td>2</td>
<td>β_{cc}(t)</td>
<td>0,000</td>
<td>0,663</td>
<td>0,920</td>
<td>1,000</td>
<td>1,092</td>
<td>1,156</td>
</tr>
<tr>
<td>3</td>
<td>f_{cm}(t) [MPa]</td>
<td>0,000</td>
<td>45,083</td>
<td>62,594</td>
<td>68,000</td>
<td>74,288</td>
<td>78,580</td>
</tr>
<tr>
<td>4</td>
<td>f_{ck}(t) [MPa]</td>
<td>0,000</td>
<td>37,083</td>
<td>54,594</td>
<td>60,000</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>5</td>
<td>E_{cm}(t) [GPa]</td>
<td>0,000</td>
<td>34,564</td>
<td>38,140</td>
<td>39,100</td>
<td>40,151</td>
<td>40,833</td>
</tr>
<tr>
<td>6</td>
<td>E_{c}(t) [GPa]</td>
<td>0,000</td>
<td>36,292</td>
<td>40,047</td>
<td>41,055</td>
<td>42,159</td>
<td>42,875</td>
</tr>
<tr>
<td>7</td>
<td>0,45f_{ck}(t) [MPa]</td>
<td>0,000</td>
<td>16,687</td>
<td>24,567</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>relativní vlhkost RH v (tᵢ₋₁, tᵢ) [%]</td>
<td>-</td>
<td>100</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>ε_{ca}^ Associates(t)</td>
<td>0</td>
<td>-5,8121E-05</td>
<td>-8,3804E-05</td>
<td>-7,9131E-05</td>
<td>-9,4769E-05</td>
<td>-1,1102E-04</td>
</tr>
<tr>
<td>10</td>
<td>ε_{cd}^ od vysychání</td>
<td>0</td>
<td>0,0000E+00</td>
<td>-8,3461E-06</td>
<td>-1,8394E-05</td>
<td>-5,6445E-05</td>
<td>-1,5408E-04</td>
</tr>
<tr>
<td>11</td>
<td>ε_{c}(tₙ,tₙ₋₁) celkové</td>
<td>0</td>
<td>-5,8121E-05</td>
<td>-9,2150E-05</td>
<td>-9,7525E-05</td>
<td>-1,5121E-04</td>
<td>-2,6510E-04</td>
</tr>
<tr>
<td>12</td>
<td>Δεₖₙ₋₁(tₙ₋₁, tₙ₋₁)</td>
<td>0</td>
<td>-5,8121E-05</td>
<td>-3,4029E-05</td>
<td>-5,7352E-06</td>
<td>-5,3689E-05</td>
<td>-1,1388E-04</td>
</tr>
<tr>
<td>13</td>
<td>A₅,Eₙ(t) tuhost průřezu - beton [MN]</td>
<td>0</td>
<td>9073,082039</td>
<td>10011,778264</td>
<td>10263,716848</td>
<td>10539,695355</td>
<td>10718,774668</td>
</tr>
<tr>
<td>14</td>
<td>ΣAE tuhost průřezu - celkem [MN]</td>
<td>4000</td>
<td>13073,082039</td>
<td>14011,778264</td>
<td>14263,716848</td>
<td>14539,695355</td>
<td>14718,774668</td>
</tr>
<tr>
<td>15</td>
<td>Δσₖₙ₋₁(t) od vnější síly</td>
<td>0</td>
<td>0</td>
<td>-0,000571</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Δσₖₙ₋₁(t) od vnější síly [MPa]</td>
<td>0</td>
<td>0,000000</td>
<td>-22,864828</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
</tr>
<tr>
<td>17</td>
<td>Δσₖₙ₋₁(t) od vnější síly [MPa]</td>
<td>0</td>
<td>0,000000</td>
<td>-114,189646</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
</tr>
</tbody>
</table>

Tab. 4-2 Výpočet pevnostních a tuhostních charakteristik spraženého ocelo-betonového sloupu
<table>
<thead>
<tr>
<th>časový interval</th>
<th>t_2,t_1</th>
<th>t_3,t_1</th>
<th>t_3,t_2</th>
<th>t_4,t_1</th>
<th>t_4,t_2</th>
<th>t_4,t_3</th>
<th>t_5,t_1</th>
<th>t_5,t_2</th>
<th>t_5,t_3</th>
<th>t_5,t_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>stáří betonu při zatížení τ</td>
<td>3 díny</td>
<td>3 díny</td>
<td>14 díny</td>
<td>3 díny</td>
<td>14 díny</td>
<td>28 díny</td>
<td>3 díny</td>
<td>14 díny</td>
<td>28 díny</td>
<td>90 díny</td>
</tr>
<tr>
<td>vyšetřované stáří betonu t</td>
<td>14 díny</td>
<td>28 díny</td>
<td>28 díny</td>
<td>90 díny</td>
<td>90 díny</td>
<td>365 díny</td>
<td>365 díny</td>
<td>365 díny</td>
<td>365 díny</td>
<td></td>
</tr>
<tr>
<td>relativní vlhkost vzduchu RH</td>
<td>60 %</td>
</tr>
<tr>
<td>β_0(t)</td>
<td>0,920496</td>
<td>1,000000</td>
<td>1,000000</td>
<td>1,092475</td>
<td>1,092475</td>
<td>1,155584</td>
<td>1,155584</td>
<td>1,155584</td>
<td>1,155584</td>
<td>1,155584</td>
</tr>
<tr>
<td>β_c(t)</td>
<td>0,662980</td>
<td>0,662980</td>
<td>0,920496</td>
<td>0,662980</td>
<td>0,920496</td>
<td>1,000000</td>
<td>0,662980</td>
<td>0,920496</td>
<td>1,000000</td>
<td>1,092475</td>
</tr>
<tr>
<td>f_(cm)(t) [MPa]</td>
<td>62,593722</td>
<td>68,000000</td>
<td>68,000000</td>
<td>74,273826</td>
<td>74,273826</td>
<td>78,579726</td>
<td>78,579726</td>
<td>78,579726</td>
<td>78,579726</td>
<td>78,579726</td>
</tr>
<tr>
<td>E_(cm)(t) [GPa]</td>
<td>45,082656</td>
<td>45,082656</td>
<td>62,593722</td>
<td>45,082656</td>
<td>62,593722</td>
<td>68,000000</td>
<td>45,082656</td>
<td>62,593722</td>
<td>68,000000</td>
<td>74,273826</td>
</tr>
<tr>
<td>E_(cm)(t) [GPa]</td>
<td>34,564122</td>
<td>34,564122</td>
<td>38,140108</td>
<td>34,564122</td>
<td>38,140108</td>
<td>39,099874</td>
<td>39,099874</td>
<td>39,099874</td>
<td>39,099874</td>
<td>40,151220</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>0,879668</td>
<td>0,879668</td>
<td>0,779087</td>
<td>0,879668</td>
<td>0,779087</td>
<td>0,755569</td>
<td>0,755569</td>
<td>0,755569</td>
<td>0,755569</td>
<td>0,731243</td>
</tr>
<tr>
<td>β_bc</td>
<td>3,033160</td>
<td>3,033160</td>
<td>6,867417</td>
<td>3,033160</td>
<td>6,867417</td>
<td>8,838181</td>
<td>3,033160</td>
<td>6,867417</td>
<td>8,838181</td>
<td>11,852438</td>
</tr>
<tr>
<td>ϕ(t, τ)</td>
<td>0,459469</td>
<td>0,547523</td>
<td>0,274772</td>
<td>0,663806</td>
<td>0,435793</td>
<td>0,355989</td>
<td>0,758715</td>
<td>0,570110</td>
<td>0,510021</td>
<td>0,426448</td>
</tr>
<tr>
<td>ε_(cd)(t)</td>
<td>-8,34607E-06</td>
<td>-1,83942E-05</td>
<td>-1,83942E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
<td>-5,64450E-05</td>
</tr>
<tr>
<td>E_(c)(τ)/E_(28)</td>
<td>0,00000E+00</td>
</tr>
<tr>
<td>ϕ(t, τ)</td>
<td>8,34607E-03</td>
<td>1,83942E-02</td>
<td>1,00481E-02</td>
<td>5,64450E-02</td>
<td>4,80989E-02</td>
<td>3,80508E-02</td>
<td>1,54078E-01</td>
<td>1,45732E-01</td>
<td>1,35684E-01</td>
<td>9,76334E-02</td>
</tr>
</tbody>
</table>
| ϕ(t, τ) Výpočet koeficientů dotvarování

Tab. 4-3 Výpočet koeficientů dotvarování
<table>
<thead>
<tr>
<th>sloupec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>řádek</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c1}(t, t_1)$</td>
<td>-5,8121E-05</td>
<td>-2,6675E-05</td>
<td>1,6034E-04</td>
<td>-1,4294E-04</td>
<td>-2,0583E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta N_c = N'$ [MN]</td>
<td>5,2734E-01</td>
<td>-5,2734E-01</td>
<td>1,6457E+00</td>
<td>-1,5065E+00</td>
<td>2,2063E+00</td>
<td>-2,2063E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c1}(t)$ od síly N_c</td>
<td>5,8121E-05</td>
<td>-2,6675E-05</td>
<td>1,6034E-04</td>
<td>-1,4294E-04</td>
<td>-2,0583E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c1}(t)$ od síly N</td>
<td>-4,0338E-05</td>
<td>-1,9060E-05</td>
<td>-1,1538E-04</td>
<td>-1,0361E-04</td>
<td>-1,4990E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c}(t)$</td>
<td>1,7783E-05</td>
<td>-5,6333E-04</td>
<td>4,4965E-05</td>
<td>3,9323E-05</td>
<td>5,5938E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \sigma_{c}(t)$ [MPa]</td>
<td>0,645403959</td>
<td>-22,5598725</td>
<td>1,846045995</td>
<td>-1,657803053</td>
<td>2,398343359</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c}(t)$ od vnější síly</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \varepsilon_{c}(t)$ od vnější síly</td>
<td>0</td>
<td>-22,86482832</td>
<td></td>
</tr>
<tr>
<td>$\Delta N_c(t)$ [kN]</td>
<td>161,350990</td>
<td>-5639,968124</td>
<td>461,511499</td>
<td>414,450763</td>
<td>599,588540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta N_s(t)$ [kN]</td>
<td>0</td>
<td>161,350990</td>
<td>-5479,617134</td>
<td>-5017,105636</td>
<td>-4602,654872</td>
<td>-4003,069033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta N_s(t)$ [kN]</td>
<td>0</td>
<td>-161,350990</td>
<td>-2521,382866</td>
<td>-2982,894364</td>
<td>-3397,345128</td>
<td>-3996,930967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_c(t)$ [MPa]</td>
<td>0,645404</td>
<td>0,950360</td>
<td>-21,914469</td>
<td>-20,068423</td>
<td>-18,410619</td>
<td>-16,012276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_s(t)$ [MPa]</td>
<td>-8,067549</td>
<td>-11,879497</td>
<td>-126,069143</td>
<td>-149,867256</td>
<td>-199,846548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4-4 Výpočet přerozdělení vnitřních sil spřaženého ocelo-betonového sloupu
Vybrané statě z betonových konstrukcí I, Modul M01

Ve skutečnosti tuhé upnutí neexistuje a tudíž síly ΔN_c^i a ΔN_s^i ve skutečnosti v jednotlivých částech průřezu nevznikají. Proto je třeba spražený sloup (tj. obě jeho části zároveň) zatížit jejich výslednicí s opačným znaménkem

$N^i = -(\Delta N_c^i + \Delta N_s^i)$.

S ohledem na (74) budeme v tab. 4-4 uvádět vždy $N^i = -\Delta N_c^i$ pro každý časový uzel vždy na stejném řádku. Vrátíme-li se k prvnímu kroku výpočtu, způsobí síla $N^i = -0,52734$ kN v betonu přírůstek tlakového pružného přetvoření

$\Delta \varepsilon_c^{el}(t_i) = \frac{N^i}{\Sigma AE(t_i)} = -4,0338 \times 10^{-5}$.

Přírůstek pružného přetvoření v oceli nezjišťujeme, protože sílu působící v ocelové části průřezu stanovíme odečtením síly v betonové části od celkové síly, viz níže. Celkový přírůstek pružného přetvoření v betonu je

$\Delta \varepsilon_c^{el}(t_i) = \Delta \varepsilon_c^{el}(t_i) + \Delta \varepsilon_c^{el}(t_i) = 1,7783 \times 10^{-5}$

a odpovídající přírůstek napětí v betonu

$\Delta \sigma_c^{el}(t_i) = \Delta \varepsilon_c^{el}(t_i) \cdot E_c(t_i) = 0.6454$ MPa.

Tomu odpovídá (tentokrát skutečný) přírůstek normálové síly v betonu

$\Delta N_c(t_i) = \Delta \sigma_c^{el}(t_i) \cdot A_c = 161,351$ kN.

V Tab. 4-4 dále uvádíme na řádcích 9 a 10 celkovou hodnotu síly a na řádcích 11 a 12 celkovou hodnotu napětí v betonové a v ocelové části průřezu.

V dalších krocích budeme provádět identické výpočtové kroky, které pouze doplníme v každém časovém uzlu výpočtem přírůstků od dotvarování (řádky 14 až 19 Tab. 4-4). Přírůstky přetvoření od dotvarování z řádku 19 potom vždy přičteme k příslušné hodnotě dotvarování $\Delta \varepsilon_c^{stc}(t_i, t_{i-1})$ na řádku 1.

V časovém uzlu $t_2 = 14$ dnů navíc k přírůstku pružného přetvoření v betonu od dotvarování a smrštování přičteme přírůstek pružného přetvoření od vnějšího zatížení sloupu silou F (řádek 5, sloupec 6 Tab. 4-4).

Vypíšeme si nyní vzorce pro výpočet přírůstků přetvoření od dotvarování betonu v jednotlivých časových sub-intervalech. K tomu využijeme modifikovaného vzorce (11) resp. pro vyčíslení přírůstků přetvoření od dotvarování způsobeného vždy pouze jednotlivými přírůstkky napětí využijeme vzorce (7) a poté provedeme sumaci podle vzorce (11). Označení veličin je vysvětleno v kap. 3.5.

Časový interval $<t_1, t_2>$:

$\Delta \varepsilon_c^{el}(t_2, t_1) = \Delta \varepsilon_c^{el}(t_1) \cdot \varphi(t_2, t_1)$

$\varepsilon_c^{el}(t_2) = \Delta \varepsilon_c^{el}(t_2, t_1)$

$\Delta \varepsilon_c^{el}(t_2, t_1) = \varepsilon_c^{el}(t_2) - \varepsilon_c^{el}(t_1)$, tento přírůstek přetvoření přičteme k $\Delta \varepsilon_c^{stc}(t_2, t_1)$, řádek 1, sloupec 5 Tab. 4-4.

Časový interval $<t_2, t_3>$:

$\Delta \varepsilon_c^{el}(t_3, t_2) = \Delta \varepsilon_c^{el}(t_2) \cdot \varphi(t_3, t_2)$
\[
\Delta \varepsilon_c^2(t_3,t_2) = \Delta \varepsilon_c^e(t_2) \varphi(t_3,t_2) \\
\varepsilon_c^e(t_3) = \Delta \varepsilon_c^{e1}(t_3, t_1) + \Delta \varepsilon_c^{e2}(t_3, t_2) \\
\Delta \varepsilon_c^e(t_3,t_2) = \varepsilon_c^e(t_3) - \varepsilon_c^e(t_2), \text{ tento přírůstek přetvoření přičteme k } \Delta \varepsilon_c^{s+c}(t_3, t_2), \text{ řádek 1, sloupec 7 Tab. 4-4.}
\]

Časový interval \(<t_3, t_4>\):
\[
\Delta \varepsilon_c^{e1}(t_4,t_1) = \Delta \varepsilon_c^e(t_1) \varphi(t_4,t_1) \\
\Delta \varepsilon_c^{e2}(t_4,t_2) = \Delta \varepsilon_c^e(t_2) \varphi(t_4,t_2) \\
\Delta \varepsilon_c^{e3}(t_4,t_3) = \Delta \varepsilon_c^e(t_3) \varphi(t_4,t_3) \\
\varepsilon_c^e(t_4) = \Delta \varepsilon_c^{e1}(t_4,t_1) + \Delta \varepsilon_c^{e2}(t_4,t_2) + \Delta \varepsilon_c^{e3}(t_4,t_3) \\
\Delta \varepsilon_c^e(t_4,t_3) = \varepsilon_c^e(t_4) - \varepsilon_c^e(t_3), \text{ tento přírůstek přetvoření přičteme k } \Delta \varepsilon_c^{s+c}(t_4, t_3), \text{ řádek 1, sloupec 9 Tab. 4-4.}
\]

Časový interval \(<t_4, t_5>\):
\[
\Delta \varepsilon_c^{e1}(t_5,t_1) = \Delta \varepsilon_c^e(t_1) \varphi(t_5,t_1) \\
\Delta \varepsilon_c^{e2}(t_5,t_2) = \Delta \varepsilon_c^e(t_2) \varphi(t_5,t_2) \\
\Delta \varepsilon_c^{e3}(t_5,t_3) = \Delta \varepsilon_c^e(t_3) \varphi(t_5,t_3) \\
\Delta \varepsilon_c^{e4}(t_5,t_4) = \Delta \varepsilon_c^e(t_4) \varphi(t_5,t_4) \\
\varepsilon_c^e(t_5) = \Delta \varepsilon_c^{e1}(t_5,t_1) + \Delta \varepsilon_c^{e2}(t_5,t_2) + \Delta \varepsilon_c^{e3}(t_5,t_3) + \Delta \varepsilon_c^{e4}(t_5,t_4) \\
\Delta \varepsilon_c^e(t_5,t_4) = \varepsilon_c^e(t_5) - \varepsilon_c^e(t_4), \text{ tento přírůstek přetvoření přičteme k } \Delta \varepsilon_c^{s+c}(t_5, t_4), \text{ řádek 1, sloupec 11 Tab. 4-4.}
\]

Po provedení výpočtů ve všech časových uzlech získáme průběh napětí v betonu i oceli v čase v důsledku redistribuce vnitřních sil, viz Tab. 4-5, Obr. 4.9.

<table>
<thead>
<tr>
<th>t [dny]</th>
<th>0</th>
<th>3</th>
<th>13,99</th>
<th>14</th>
<th>28</th>
<th>90</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_c(t_0)) [MPa]</td>
<td>0</td>
<td>0,6454</td>
<td>0,9504</td>
<td>-21,9145</td>
<td>-20,0684</td>
<td>-18,4106</td>
<td>-16,0123</td>
</tr>
<tr>
<td>(\sigma_s(t_0)) [MPa]</td>
<td>0</td>
<td>-8,0675</td>
<td>-11,8795</td>
<td>-126,0691</td>
<td>-149,1447</td>
<td>-169,8673</td>
<td>-199,8465</td>
</tr>
</tbody>
</table>

Tab. 4-5 Vývoj napětí v čase v důsledku redistribuce vnitřních sil
Určete přerozdělení vnitřních sil spřaženého ocelo-betonového sloupu z příkladu 4.1. Uvažujte veškeré vstupní údaje totožné. Při řešení metodou časové diskretizace však uvažujte 100 subintervalů s cílem zpřesnit řešení úlohy.

Řešení

Řešení tohoto příkladu je vysvětleno výše. Rozdíl spočívá pouze ve vyšší časové náročnosti a pracnosti. Proto jej nebudeme provádět ručním výpočtem a použijeme k řešení program SCIA.ESA PT [27].

Vysvětlení zadání vstupních údajů je nad rámec tohoto textu. Cílem úlohy je pouze srovnání přesnosti metody pro různé počty řešených časových intervalů. Na tento úkol se tedy v následujícím textu soustředíme.

Rozdělení subintervalů na časové ose tak, jak je navrhl program SCIA.ESA PT je zobrazeno na Obr. 4.10.

Výsledné normálové síly v jednotlivých materiálech jsou na Obr. 4.11 a v Tab. 4-6. Z výsledků je zřejmé, že metoda v tomto případě není příliš citlivá na hustotu dělení časové osy. Tento případ bohužel nelze zobecnit. V případech řešení delšího časového úseku, jiného poměru tuhosti částí průřezu apod. je metoda na dělení časové osy citlivější.
Obr. 4.10 Rozdělení subintervalů na časové ose

Obr. 4.11 Srovnání výsledků řešení redistribuce vnitřních sil pro různý počet časových intervalů
Kontrolní otázky

Jak rozumíte pojmu nehomogenita konstrukcí z hlediska reologických vlastností betonu?

Vysvětlete věty Collonnettiho.

Jaké jsou předpoklady řešení reologických účinků na konstrukce v uzavřené formě?

Uveďte příklady redistribuce vnitřních sil vyvolané změnou nosné soustavy.

<table>
<thead>
<tr>
<th>t [dny]</th>
<th>0</th>
<th>3</th>
<th>13,99</th>
<th>14</th>
<th>28</th>
<th>90</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(c) (t) [kN] - 5 intervalů</td>
<td>0,0</td>
<td>161,4</td>
<td>237,6</td>
<td>-5478,6</td>
<td>-5017,1</td>
<td>-4602,7</td>
<td>-4003,1</td>
</tr>
<tr>
<td>N(c) (t) [kN] - 5 intervalů</td>
<td>0,0</td>
<td>-161,4</td>
<td>-237,6</td>
<td>-2521,4</td>
<td>-2982,9</td>
<td>-3397,3</td>
<td>-3996,9</td>
</tr>
<tr>
<td>N(c) (t) [kN] - 100 intervalů</td>
<td>0,0</td>
<td>131,7</td>
<td>212,6</td>
<td>-5503,7</td>
<td>-5068,2</td>
<td>-4657,9</td>
<td>-4087,1</td>
</tr>
</tbody>
</table>

Tab. 4-6 Vývoj normálových sil v čase v důsledku redistribuce
5 Závěr

5.1 Shrnutí

Věříme, že tato studijní opora Vám napomohla ke snazší orientaci v problematice reologických jevů a analýzy postupně budovaných betonových a předpjaštých konstrukcí. Vzhledem k omezenému rozsahu tohoto textu nebylo možné uvádět ve větší míře postupy a číselná řešení příkladů ke všem částem probírané látky. Z důvodů pedagogických byly některé jevy popsány záměrně s využitím určitých zjednodušujících předpokladů, které umožnily soustředit se v popisu na vysvětlovaný jev a tím snad napomohly k snazšímu pochopení problému.

5.2 Studijní prameny

5.2.1 Seznam použité literatury

[1] ACI 318M-05 Building Code Requirements for Structural Concrete and Commentary, ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, 2005

[18] NAVRÁTIL, J. a ZICH, M. Předpjetý beton, průvodcem předmětem BL11, modul P01, studijní opory pro studijní programy s kombinovanou formou studia, Vysoké učení technické v Brně, Fakulta stavební, 2006

[23] ŠMERDA, Z., KŘÍŠTEK, V. Creep and Shrinkage of Concrete Elements and Structures, SNTL Praha, 1988

5.2.2 Seznam doplňkové studijní literatury

5.2.3 Odkazy na další studijní zdroje a prameny

[27] SCIA.ESA PT - *Software System for Analysis, Design and Drawings of Steel, Concrete, Timber and Plastic Structures*, SCIA Group nv, Industrieweg 1007, B-3540 Herk-de-Stad, Belgium, www.scia-online.com

5.3 Označení některých veličin

Seznam použitých symbolů není úplný, některé veličiny či symboly jsou vyšetřeny přímo v textu.

5.3.1 Latinská písmena

\[A_c \] průřezová plocha betonové části průřezu
\[C(t, \tau) \] míra dotvarování
\[E_c \] počáteční tečnový modul pružnosti betonu
\[E_{cm} \] sečnový modul pružnosti betonu mezi \(\sigma_c = 0 \) a \(\sigma_c = 0.4f_c \)
\[E_{cef} \] efektivní modul pružnosti betonu
\[E_{cea} \] efektivní modul pružnosti betonu závislý na čase
\[f_c \] pevnost betonu v tlaku
\[f_{cd} \] výpočtová (návrhová) hodnota válcové pevnosti betonu v tlaku
\[f_{ck} \] charakteristická hodnota válcové pevnosti betonu v tlaku
\[f_{cm} \] střední hodnota válcové pevnosti betonu v tlaku
\[g \] stálé zatížení
\[h \] výška
\[J(t, \tau) \] funkce poddajnosti
\[l \] délka
\[M \] ohybový moment
\[M_E \] ohybový moment způsobený vnějším zatížením
\[M_g \] ohybový moment způsobený stálým zatížením
\[M_{g0} \] ohybový moment způsobený vlastní tíhou
\[M_p \] ohybový moment způsobený předpínací silou
\[M_q \] ohybový moment způsobený proměnným (nahodilým) zatížením
\[M_R \] moment na mezi únosnosti (\(R \ldots Resistance, odpor \))
\[N \] normálová síla (význam dolních indexů stejný jako v případě ohybových momentů \(M \))
P předpínací síla (jednotlivá stádia působení odlišena indexy stejně jako v případě napětí v předpínací výztuži σ_p)

p zatižení od předpětí

RH relativní vlhkost vzduchu

q proměnné (nahodilé) zatížení

s koeficient závislý na druhu cementu

t čas (jednotlivá stádia působení odlišena indexy nebo čísly diskrét-ních časových okamžiků - časových uzlů t_0, t_1, t_2, ... t_n)

V posouvací síla (význam dolních indexů stejný jako v případě ohybových momentů M)

5.3.2 Řecká písmena

δ pokles podpory

Δ přírůstek, změna

$\Delta \varepsilon_c, \bar{\varepsilon}_c$ přírůstek okamžitého pružného poměrného přetvoření betonu

$\Delta \sigma_c$ přírůstek, změna napětí v betonu

ε_c poměrné přetvoření betonu

$\varepsilon_c, \bar{\varepsilon}_c(t)$ poměrné přetvoření od dotvarování betonu,

$\varepsilon_c, \tilde{\varepsilon}_c(t)$ okamžité pružné (vratné) poměrné přetvoření betonu,

$\varepsilon_c, \bar{\varepsilon}_c(t)$ okamžité nepružné (nevratné) poměrné přetvoření betonu,

$\varepsilon_c, \tilde{\varepsilon}_c(t)$ zpožděné pružné poměrné přetvoření betonu,

$\varepsilon_c, \bar{\varepsilon}_c(t)$ zpožděné nepružné poměrné přetvoření betonu,

$\varepsilon_c, \tilde{\varepsilon}_c(t)$ zpožděné nepružné poměrné přetvoření betonu, realizující se zpož-

$\varepsilon_c, \bar{\varepsilon}_c(t)$ poměrné přetvoření betonu od teplotních změn,

$\varepsilon_c, \tilde{\varepsilon}_c(t)$ poměrné přetvoření od smršťování betonu,

$\varepsilon_{ca}, \bar{\varepsilon}_{ca}(t)$ poměrné přetvoření od autogenního smršťování

$\varepsilon_{cd}, \bar{\varepsilon}_{cd}(t)$ poměrné přetvoření od smršťování vysycháním

$\phi(t, \tau)$ koeficient dotvarování

$\phi_0(t, \tau)$ koeficient základního dotvarování betonu

$\phi_d(t, \tau)$ koeficient dotvarování betonu při vysychání

σ_c napětí v betonu